www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert + Rekursion
Grenzwert + Rekursion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert + Rekursion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:00 Mo 24.03.2008
Autor: abi2007LK

Hallo,

ich habe ein heftiges Problem mit eine Aufgabe. Die Lösung liegt mir vor. Jedoch verstehe ich diese nicht wirklich...

Aufgabe: Für die reelle Folge [mm] (a_n)_{n \in \IN} [/mm] gelte:

[mm] a_1 [/mm] = 1, [mm] a_{n+1} [/mm] = [mm] \frac{2+4a_n}{4+3a_n} [/mm] für alle n [mm] \in \IN. [/mm]

Zeigen Sie, dass die Folge [mm] (a_n)_{n \in \IN} [/mm] konvergiert und bestimmen Sie ihren Grenzwert. Hinweis: Zeigen Sie, dass Konstanten [mm] \alpha, \beta [/mm] > 0 existieren mit [mm] \alpha \le a_n \le \beta. [/mm]

Die Aufgabe und den Hinweis meine ich verstanden zu haben. Nun kommt die Musterlösung. Meine Fragen habe ich rot markiert.

Musterlösung:

klar: [mm] a_n [/mm] > 0 (n [mm] \in [/mm] IN); a = [mm] \frac{2+4a}{4+3a}, [/mm] a > 0 [mm] \gdw [/mm] a = [mm] \wurzel{\frac{2}{3}} [/mm] =: [mm] a^{+}; [/mm]

1. Frage: So eine Herangehensweise habe ich noch nie gesehen. Besonders ist mir dieses a = [mm] \frac{2+4a}{4+3a} [/mm] "Konstrukt" total fremd. Was soll das sein?

Beh: [mm] a_n \to a^{+} [/mm] (n [mm] \to \infty) [/mm]

Okay. Es ziehlt also darauf ab, dass [mm] a^{+} [/mm] der Grenzwert sein soll. Soweit klar.

Beweis: [mm] b_n [/mm] := [mm] a_n [/mm] - [mm] a^{+}, [/mm] n [mm] \in \IN; [/mm]
[mm] b_{n+^} [/mm] = [mm] a_{n+1} [/mm] - [mm] a^{+} [/mm] = (nach Definition) [mm] \frac{2+4a_n}{4+3a_n} [/mm] - [mm] \frac{2+4a^{+}}{4+3a^{+}} [/mm] = [mm] \frac{10}{(4+3a_n)(4+3a^{+})} b_n [/mm]

2. Frage: Okay. Für [mm] a_{n+1} [/mm] setze ich einfach die gegeben Folge ein. Aber nun komme ich mit diesem [mm] a^{+} [/mm] und a = [mm] \frac{2+4a}{4+3a} [/mm] "Konstrukt" durcheinander. Was bringt das und wie kommen die auf [mm] \wurzel{\frac{2}{3}}? [/mm]

Da | [mm] \frac{10}{(4+3a_n)(4+3a^{+})} [/mm] | < [mm] \frac{10}{16}, (a_n [/mm] > 0, [mm] a^{+} [/mm] > 0)

3. Frage: Hmmm. Jetzt fehlt da im Betrag plötzlich das [mm] b_n [/mm] und wie kommen die auf [mm] \frac{10}{16} [/mm] ?

folgt: [mm] |b_{n+1} [/mm] | < [mm] \frac{10}{6}^n |b_1| \to [/mm] 0 (n [mm] \to \infty). [/mm]

4. Frage: Also der ganze Beweis ist mir ein Rätsel. Kann da jemand Licht uns Dunkle bringen? :)

        
Bezug
Grenzwert + Rekursion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 24.03.2008
Autor: pelzig

(Ich schreib dir den Beweis nochmal etwas ausführlicher hin)

Offensichtlich gilt für beliebige konvergente Zahlenfolgen [mm] $a_n$: [/mm]
[mm] $$\lim_{n\rightarrow\infty}a_{n+1}=\lim_{n\rightarrow\infty}a_n$$ [/mm]
Angenommen, der gesuchte Grenzwert existiert, so setze [mm] $\lim_{n\rightarrow\infty}a_n=:a$ [/mm] und es folgt:
[mm] $$a=\lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}a_{n+1}=\lim_{n\rightarrow\infty}\frac{2+4a_n}{4+3a_n}=\frac{2+4\lim_{n\rightarrow\infty}a_n}{4+3\lim_{n\rightarrow\infty}a_n}=\frac{2+4a}{4+3a}\Leftrightarrow a=\pm\sqrt{\frac{2}{3}}$$ [/mm]
Da außerdem [mm] $a_n>0$ [/mm] gilt, folgt [mm] $a=\sqrt{\frac{2}{3}}$. [/mm] (In der Musterlösung schreiben sie jetzt immer $a_+$, ist genaugenommen sauberer, dafür aber auch verwirrender - ich schreibe einfach weiterhin $a$.)

Mit dieser Methode haben wir also den einzigen in Frage kommenden Grenzwert "erraten", jetzt müssen wir zeigen, dass tatsächlich [mm] $\lim_{n\rightarrow\infty}a_n=a$ [/mm] gilt. Dazu wird in der Musterlösung gezeigt, dass die Folge [mm] $b_n:=a_n-a$ [/mm] eine Nullfolge ist.

Dazu wird für [mm] $b_n$ [/mm] auch erstmal eine rekursive Bildungsvorschrift hergeleitet:
[mm] $$b_{n+1}=\frac{10}{(4+3a_n)(4+3a^{+})}b_n$$ [/mm]
und es folgt:
[mm] $$|b_{n+1}|=\left|\frac{10}{(4+3a_n)(4+3a^{+})}b_n\right|=\frac{10}{(4+3a_n)(4+3a^{+})}|b_n|<\frac{10}{16}|b_n|=:q|b_n|$$ [/mm]

Die letzte Abschätzung gilt, da wie gesagt [mm] $a_n,a>0$ [/mm] sind.
Wir haben also jetzt [mm] $|b_{n+1}| Jetzt haben wir [mm] $0\le|b_{n+1}|< q^n|b_1|$. [/mm] Wegen $q<1$ folgt [mm] $q^n|b_1|\rightarrow0$ [/mm] und wir können das "Sandwichlemma" (Sind [mm] $x_n,y_n,z_n$ [/mm] Folgen mit [mm] $x_n\le y_n\le z_n$ [/mm] und [mm] $x_n\rightarrow c\leftarrow z_n$, so folgt $y_n\rightarrow [/mm] c$) anwenden und es folgt [mm] $b_n\rightarrow0$ [/mm] wie gewünscht und wir sind fertig [mm] $\Box$. [/mm]

Gerade am Ende werden ein paar sehr schöne, häufig benuzte Schritte gemacht, die solltest du auf jeden Fall vollständig nachvollziehen und, falls irgendwelche Unklarheiten bestehen sollten, lieber nochmal nachfragen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de