www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert Folgen und Reihen
Grenzwert Folgen und Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Folgen und Reihen: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 12:02 Di 25.01.2011
Autor: Shoegirl

Aufgabe
Berechnen Sie die Grenzwerte der unten stehenden Folgen und Reihen für n -> unendlich:

an= (1+ [mm] (1/5n))^n [/mm]

Hallo, ich habe hier jetzt etwas Probleme, weil ich dieses Verfahren nur mit rationalen Funktionen kenne. Dort guckt man ja dann einfach wo die höhste Potenz ist und kann das ganze dann daraus bestimmen. Das ist ja aber bei so einer Aufgabe nicht möglich.
Ich habe in einem Buch nachgelesen und dort wird das ganze erstmal zu einem Bruch gemacht. Sprich man teilt das ganze einfach durch 1 und multpliziert dann Nenner und Zähler mit der Funktion selbst. Ziel ist es dann zu einer Substitution zu kommen. Dort wird dann die Variable durch unendlich ausgetauscht und das ganze dann errechnet.
Irgendwie haut das hier ja aber auch nicht hin, wegen den hoch n. Also ich kann es zumnindest nicht.
Gibt es noch einen anderen, möglichst einfachen Weg?

        
Bezug
Grenzwert Folgen und Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Di 25.01.2011
Autor: schachuzipus

Hallo Shoegirl,

> Berechnen Sie die Grenzwerte der unten stehenden Folgen und
> Reihen für n -> unendlich:
>
> an= (1+ [mm](1/5n))^n[/mm]
> Hallo, ich habe hier jetzt etwas Probleme, weil ich dieses
> Verfahren nur mit rationalen Funktionen kenne. Dort guckt
> man ja dann einfach wo die höhste Potenz ist und kann das
> ganze dann daraus bestimmen. Das ist ja aber bei so einer
> Aufgabe nicht möglich.
> Ich habe in einem Buch nachgelesen und dort wird das ganze
> erstmal zu einem Bruch gemacht. Sprich man teilt das ganze
> einfach durch 1 und multpliziert dann Nenner und Zähler
> mit der Funktion selbst. Ziel ist es dann zu einer
> Substitution zu kommen. Dort wird dann die Variable durch
> unendlich ausgetauscht und das ganze dann errechnet.
> Irgendwie haut das hier ja aber auch nicht hin, wegen den
> hoch n. Also ich kann es zumnindest nicht.
> Gibt es noch einen anderen, möglichst einfachen Weg?

Kennst du [mm]\lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e[/mm] (eulersche Zahl) und in Verallgemeinerung [mm]\lim\limits_{n\to\infty}\left(1+\frac{\red{x}}{n}\right)^n=e^{\red{x}}[/mm] für alle [mm]x\in\IR[/mm] ?

Das sollte helfen.

Für die Grenzwertbetrachtung der Reihe [mm]\sum\limits_{n=1}^{\infty}\underbrace{\left(1+\frac{1}{5n}\right)^n}_{a_n}[/mm] hilft der GW der Folge [mm](a_n)_{n\in\IN}[/mm] und das Trivialkriterium für Reihenkonvergenz ...



Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de