www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Grenzwert Kosinus und Sinus
Grenzwert Kosinus und Sinus < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert Kosinus und Sinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:34 Do 09.04.2015
Autor: Mathe-Andi

Hallo,

es ist [mm] \limes_{t\rightarrow\infty}f(t) [/mm] zu ermitteln, wobei [mm] f(t)=2+cos(2t)+sin(2t)+2t*e^{-3t} [/mm] ist. Meine Lösung schaut wie folgt aus:

Aufgrund des definierten Wertebereiches für y=sin(t) sowie y=cos(t) von [mm]-1 \le y \le 1[/mm] mit dem Definitionsbereich [mm]-\infty
Ist das eine mathematisch korrekte Lösung bzw. Argumentation?


Grüße, Andreas

        
Bezug
Grenzwert Kosinus und Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Do 09.04.2015
Autor: DieAcht

Hallo Mathe-Andi!


Deine Idee ist richtig, aber nicht sauber ausformuliert. Außerdem
benutzt du, ohne es zu merken, die Grenzwertsätze, obwohl die Vor-
aussetzung dafür nicht gegeben ist.

Ich denke, dass du sauber zeigen kannst, dass die Funktion beschränkt
ist. Damit hast du aber noch nicht gezeigt, dass sie divergiert.

Überlege nochmal selbst. ;-)


Gruß
DieAcht

Bezug
        
Bezug
Grenzwert Kosinus und Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 01:44 Fr 10.04.2015
Autor: Marcel

Hallo!

> Hallo,
>  
> es ist [mm]\limes_{t\rightarrow\infty}f(t)[/mm] zu ermitteln, wobei
> [mm]f(t)=2+cos(2t)+sin(2t)+2t*e^{-3t}[/mm] ist.

1.) Plotte Dir mal den (bzw. einen Ausschnitt des) Graphen von [mm] $f\,.$ [/mm]

2.) Denke "über markante Punkte von Sinus und Kosinus" nach.

3.) Denke nun drüber nach, ob Du vielleicht "markante Punkte für [mm] $f\,$" [/mm]
    benennen kannst. Auch falls nicht, so fahre mit 4.) weiter.

4.) Setze mal [mm] $g(t):=2+\cos(2t)+\sin(2t)\,.$ [/mm]

5.) Wiederhole 1.) und 3.) auch für [mm] $g\,$; [/mm] dabei kann vielleicht auch [mm] $g\,'$ [/mm] helfen.

6.) Kreiere eine Folge von [mm] $x_k$ [/mm] mit [mm] $x_k \to \infty$ [/mm] so, dass [mm] $g\,$ [/mm]

    - an allen [mm] $x_{2k}$ [/mm] sein Maximum

    - an allen [mm] $x_{2k-1}$ [/mm] sein Minimum

annimmt.

7.) Benutze diese [mm] $x_k$ [/mm] dann zudem in [mm] $f\,.$ [/mm]

Kommentar: Ist Dir klar, dass [mm] $((-1)^n+\,1/n)_n$ [/mm] eine divergente Folge ist?

Gruß,
  Marcel

Bezug
        
Bezug
Grenzwert Kosinus und Sinus: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Fr 10.04.2015
Autor: fred97


> Hallo,
>  
> es ist [mm]\limes_{t\rightarrow\infty}f(t)[/mm] zu ermitteln, wobei
> [mm]f(t)=2+cos(2t)+sin(2t)+2t*e^{-3t}[/mm] ist. Meine Lösung schaut
> wie folgt aus:
>  
> Aufgrund des definierten Wertebereiches für y=sin(t) sowie
> y=cos(t) von [mm]-1 \le y \le 1[/mm] mit dem Definitionsbereich
> [mm]-\infty
> sondern es gilt [mm]0\le \limes_{t\rightarrow\infty}f(t) \le 4[/mm]
>  
> Ist das eine mathematisch korrekte Lösung bzw.
> Argumentation?

Nein, überhaupt nicht !

1. Du redest von einem nicht ex. Grenzwert und schreibst dennoch  [mm]0\le \limes_{t\rightarrow\infty}f(t) \le 4[/mm] !

Also was jetzt? Ex. der Grenzwert oder ex. er nicht ?

2. Was ist denn ein "absoluter Grenzwert" ?

3. Mit Deiner "Argumentation" hätte jede Funktion der Bauart

    $ [mm] f(t)=2+g(t)+h(t)+2t\cdot{}e^{-3t} [/mm] $,

keinen GW für $t [mm] \to \infty$, [/mm] wenn nur |g|,|h| [mm] \le [/mm] 1 auf [mm] \IR [/mm] gilt.

Das ist natürlich Quark !

4. Wenn $ [mm] \limes_{t\rightarrow\infty}f(t) [/mm] $ existieren würde, so würde auch

   [mm] \limes_{n\rightarrow\infty}f((2n+1)*\bruch{\pi}{2}) [/mm]

existieren. Das ist aber nicht der Fall. Warum ?

FRED

>  
>
> Grüße, Andreas


Bezug
                
Bezug
Grenzwert Kosinus und Sinus: Folge bei 4. anders...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Fr 10.04.2015
Autor: Marcel

Hallo,

> > Hallo,
>  >  
> > es ist [mm]\limes_{t\rightarrow\infty}f(t)[/mm] zu ermitteln, wobei
> > [mm]f(t)=2+cos(2t)+sin(2t)+2t*e^{-3t}[/mm] ist. Meine Lösung schaut
> > wie folgt aus:
>  >  
> > Aufgrund des definierten Wertebereiches für y=sin(t) sowie
> > y=cos(t) von [mm]-1 \le y \le 1[/mm] mit dem Definitionsbereich
> > [mm]-\infty
> > sondern es gilt [mm]0\le \limes_{t\rightarrow\infty}f(t) \le 4[/mm]
>  
> >  

> > Ist das eine mathematisch korrekte Lösung bzw.
> > Argumentation?
>  
> Nein, überhaupt nicht !
>  
> 1. Du redest von einem nicht ex. Grenzwert und schreibst
> dennoch  [mm]0\le \limes_{t\rightarrow\infty}f(t) \le 4[/mm] !
>  
> Also was jetzt? Ex. der Grenzwert oder ex. er nicht ?
>  
> 2. Was ist denn ein "absoluter Grenzwert" ?
>  
> 3. Mit Deiner "Argumentation" hätte jede Funktion der
> Bauart
>  
> [mm]f(t)=2+g(t)+h(t)+2t\cdot{}e^{-3t} [/mm],
>  
> keinen GW für [mm]t \to \infty[/mm], wenn nur |g|,|h| [mm]\le[/mm] 1 auf [mm]\IR[/mm]
> gilt.
>  
> Das ist natürlich Quark !
>  
> 4. Wenn [mm]\limes_{t\rightarrow\infty}f(t)[/mm] existieren würde,
> so würde auch
>  
> [mm]\limes_{n\rightarrow\infty}f((2n+1)*\bruch{\pi}{2})[/mm]
>  
> existieren. Das ist aber nicht der Fall. Warum ?

nur der allgemeine Hinweis: Bei 4. wollte Fred sicher eine etwas andere
Folge hinschreiben; obige würde gegen $1$ konvergieren (wenn ich mich
nicht verrechnet habe).

Vermutung: Gemeint war

    [mm] $\limes_{n\rightarrow\infty}f((2n+1)*\bruch{\pi}{\red{4}})$ [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de