Grenzwert Unendliches Produkt < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:19 Fr 07.05.2010 | Autor: | kegel53 |
Aufgabe | Kann ich das Produkt [mm] \prod_{k\in{\IN}\atop k\ge{2}} (1-\bruch{1}{k^2}) [/mm] noch weiter vereinfachen, d.h. liegt hier irgendeine Art Konvergenz vor?? |
Hallo Leute,
also ich bin im Internet fündig geworden und hab rausgefunden, dass gilt:
[mm] sin(\pi\cdot{z})=\pi\cdot{z}\cdot{\prod_{k=1}^{\infty} (1-\bruch{z^2}{k^2})} [/mm] für alle [mm] z\in{\IC}
[/mm]
[mm] \Longleftrightarrow \prod_{k=1}^{\infty} (1-\bruch{z^2}{k^2})=\bruch{sin(\pi\cdot{z})}{\pi\cdot{z}} [/mm] für alle [mm] z\in{\IC}
[/mm]
Somit gilt für obige Reihe mit z=1:
[mm] \prod_{k=1}^{\infty} (1-\bruch{1}{k^2})=\bruch{sin(\pi)}{\pi}=\bruch{0}{\pi}=0
[/mm]
Da nun aber meine Reihe nicht bei k=1 beginnt, sondern erst bei k=2, weiß ich nicht, ob hierbei trotzdem noch Konvergenz vorliegt
und vor allem gegen welchen Grenzwert das Produkt in diesem Fall dann konvergiert.
Hat dazu jemand ne Idee oder kennt die Reihe vielleicht sogar??
Vielen Dank schon mal für die Hilfe!
|
|
|
|
Hallo kegel53,
> Kann ich das Produkt [mm]\prod_{k\in{\IN}\atop k\ge{2}} (1-\bruch{1}{k^2})[/mm]
> noch weiter vereinfachen, d.h. liegt hier irgendeine Art
> Konvergenz vor??
> Hallo Leute,
> also ich bin im Internet fündig geworden und hab
> rausgefunden, dass gilt:
>
> [mm]sin(\pi\cdot{z})=\pi\cdot{z}\cdot{\prod_{k=1}^{\infty} (1-\bruch{z^2}{k^2})}[/mm]
> für alle [mm]z\in{\IC}[/mm]
>
>
> [mm]\Longleftrightarrow \prod_{k=1}^{\infty} (1-\bruch{z^2}{k^2})=\bruch{sin(\pi\cdot{z})}{\pi\cdot{z}}[/mm]
> für alle [mm]z\in{\IC}[/mm]
>
>
> Somit gilt für obige Reihe mit z=1:
>
> [mm]\prod_{k=1}^{\infty} (1-\bruch{1}{k^2})=\bruch{sin(\pi)}{\pi}=\bruch{0}{\pi}=0[/mm]
>
>
> Da nun aber meine Reihe nicht bei k=1 beginnt, sondern erst
> bei k=2, weiß ich nicht, ob hierbei trotzdem noch
> Konvergenz vorliegt
> und vor allem gegen welchen Grenzwert das Produkt in
> diesem Fall dann konvergiert.
>
> Hat dazu jemand ne Idee oder kennt die Reihe vielleicht
> sogar??
Das ist keine Reihe, sondern ein Produkt!
Wenn man sich mal ein paar Faktoren hinschreibst, kommt man schnell auf die Idee, dass [mm] $a_n=\prod\limits_{k=2}^{n}\left(1-\frac{1}{k^2}\right)=\frac{n+1}{2n}$ [/mm] ist ...
Zeige das mal per Induktion, bedenke dann, dass [mm] $\prod\limits_{k=2}^{\infty}\left(1-\frac{1}{k^2}\right)=\lim\limits_{n\to\infty}\prod\limits_{k=2}^{n}\left(1-\frac{1}{k^2}\right)=\lim\limits_{n\to\infty}a_n$ [/mm] ist ...
> Vielen Dank schon mal für die Hilfe!
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:36 Fr 07.05.2010 | Autor: | kegel53 |
> Das ist keine Reihe, sondern ein Produkt!
Ja hat ich schon korrigiert,aber danke für den Hinweis!
> Wenn man sich mal ein paar Faktoren hinschreibst, kommt man
> schnell auf die Idee, dass
> [mm]a_n=\prod\limits_{k=2}^{n}\left(1-\frac{1}{k^2}\right)=\frac{n+1}{2n}[/mm]
> ist ...
>
> Zeige das mal per Induktion, bedenke dann, dass
> [mm]\prod\limits_{k=2}^{\infty}\left(1-\frac{1}{k^2}\right)=\lim\limits_{n\to\infty}\prod\limits_{k=2}^{n}\left(1-\frac{1}{k^2}\right)=\lim\limits_{n\to\infty}a_n[/mm]
> ist ...
Vielen Dank!!
|
|
|
|