www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert berechnen
Grenzwert berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Sa 08.09.2007
Autor: Tauphi

Hallo,

ich hänge grad an einer Aufgabe, den Grenzwert zu berechnen, etwas fest, weil ich die Lösung nicht nachvollziehen kann und fänds super, wenn mir jemand erklären könnte, warum der Grenzwert so ist, wie er ist Oo

Ich muss den Grenzwert von folgendem ausrechnen:
[mm] \limes_{x\rightarrow0}\bruch{1}{1+\wurzel{1-ln(x)}} [/mm]

In der Musterlösung steht, dass -ln(x) gegen [mm] \infty [/mm] geht, somit ginge auch der ganze Bruch gegen [mm] \infty [/mm] und der Grenzwert sei 0.

Jetzt meine Frage ... Warum geht der -ln(x) gegen [mm] \infty [/mm] ?

Wenn ich für x die 0 einsetze und den natürlichen Logarithmus ausrechne, erhalte ich im Taschenrechner einen Error. Gibt es da irgendeine Sonderregel, von der ich nichts weiss?

Hier noch der weitere Lösungsweg aus der Musterlösung:

[mm] \bruch{1}{1+\wurzel{1-(-\infty)}}=\bruch{1}{1+\infty}=\bruch{1}{\infty}=0 [/mm]

Eine Aufklärung wäre super :)

Viele Grüße
Andi

        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Sa 08.09.2007
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Andreas,

na, du kennst doch bestimmt den Graphen vom \ln

Der \ln ist nur definiert für positive x und geht, je näher du dich der 0 (von rechts) näherst  gegen -\infty

Wenn also $\lim\limits_{x\downarrow 0}\ln(x)=-\infty$ ist, so ist doch sicher $\lim\limits_{x\downarrow 0}\left(\red{-}\ln(x)\right)=\red{-}\lim\limits_{x\downarrow 0}\ln(x)=\red{-}(-\infty})=\infty$

Der Rest folgt dann ja direkt mit den Grenzwertsätzen

Wenn's noch nicht ganz klar geworden ist, hak nochmal nach ;-)

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de