www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert berechnen
Grenzwert berechnen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Sa 31.07.2010
Autor: melisa1

Aufgabe
Existieren die folgenden Grenzwerte?

[mm] \limes_{x\rightarrow2} \bruch{x^2-3x+2}{x^2-5x+6} [/mm]

[mm] \limes_{x\rightarrow0}\bruch{e^x-1}{|x|} [/mm]

Hallo,


in der Lösung steht hier:

[mm] \limes_{x\rightarrow2} \bruch{x^2-3x+2}{x^2-5x+6}=\limes_{x\rightarrow2} \bruch{2x-3}{2x-5} [/mm]


ich versteh hier überhaupt nicht, was gemacht wurde. Was ist mit [mm] x^2 [/mm] und 2 bzw. 6 passiert, woher kommt 2x, und warum steht da nur noch -3 und nicht -3x......

Das ganze hat wahrscheinlich was mit [mm] \limes_{x\rightarrow2} [/mm] zu tun...

Würde mich freuen, wenn mir das jemand erklären könnte.


Lg Melisa

        
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 31.07.2010
Autor: schachuzipus

Hallo melisa1,

> Existieren die folgenden Grenzwerte?
>  
> [mm]\limes_{x\rightarrow2} \bruch{x^2-3x+2}{x^2-5x+6}[/mm]
>  
> [mm]\limes_{x\rightarrow0}\bruch{e^x-1}{|x|}[/mm]
>  Hallo,
>  
>
> in der Lösung steht hier:
>  
> [mm]\limes_{x\rightarrow2} \bruch{x^2-3x+2}{x^2-5x+6}=\limes_{x\rightarrow2} \bruch{2x-3}{2x-5}[/mm]

Das stimmt zwar in der Aussage, denn beide GWe sind gleich, aber wie man von links nach rechts kommt ...

Nicht jeder Lösung bedenkenlos trauen!

Besser selber rechnen.

Faktorisiere Zähler und Nenner:

[mm] $x^2-3x+2=(x-2)(x-1)$ [/mm] und [mm] $x^2-5x+6=(x-2)(x-3)$ [/mm] mit p/q-Formel oder Vieta oder scharfem Hinsehen ...

Damit [mm] $\lim\limits_{x\to 2}\bruch{x^2-3x+2}{x^2-5x+6}=\limes_{x\rightarrow2} \bruch{(x-2)(x-1)}{(x-2)(x-3)}=\ldots$ [/mm] kürzen und Grenzübergang machen!

>  
>
> ich versteh hier überhaupt nicht, was gemacht wurde. Was
> ist mit [mm]x^2[/mm] und 2 bzw. 6 passiert, woher kommt 2x, und
> warum steht da nur noch -3 und nicht -3x......
>  
> Das ganze hat wahrscheinlich was mit [mm]\limes_{x\rightarrow2}[/mm]
> zu tun...
>  
> Würde mich freuen, wenn mir das jemand erklären könnte.
>  
>
> Lg Melisa

Gruß

schachuzipus


Bezug
                
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:36 Sa 31.07.2010
Autor: melisa1

danke, das mit dem faktorisieren ist mir nicht eingefallen!

Bezug
                
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Sa 31.07.2010
Autor: MontBlanc

Hallo schachuzipus,

war das nicht einfach nur eine Anwendung der Regel von L'Hôpital ?
Es ist doch ein Fall von [mm] "\frac{0}{0}", [/mm] nicht wahr ?


LG

Bezug
                        
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Sa 31.07.2010
Autor: schachuzipus

Hi MB,

in der Tat, habe ich komplett übersehen ...

Immer diese schweren Geschütze ...

;-)

Danke für die Erhellung!

Gruß

schachuzipus

Bezug
                        
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Sa 31.07.2010
Autor: melisa1

ohh darauf hätte ich aber auch drauf kommen müssen....danke :)

Bezug
                                
Bezug
Grenzwert berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Sa 31.07.2010
Autor: Marcel

Hallo,

> ohh darauf hätte ich aber auch drauf kommen
> müssen....danke :)

Tipp: Wenn bei einem Bruch bei der Grenzwertberechnung im Zähler und im Nenner plötzlich die Ableitungen stehen, dann denke an de L'Hopital ;-)

P.S.:
Man sollte sich auch überzeugen, dass der Satz von de L'Hopital anwendbar ist (ist er hier, und in der Mitteilung mit dem entsprechenden Hinweis steht es auch).

P.P.S.:
Bei
[mm] $$(\*)\;\;\;\limes_{x\rightarrow0}\bruch{e^x-1}{|x|}$$ [/mm]
sollte man zunächst
$$$ [mm] \limes_{x\rightarrow0}\bruch{e^x-1}{x}$$ [/mm]
betrachten:
Was hat das letztstehende mit [mm] $\exp'(0)$ [/mm] zu tun?

Wie sieht es dann mit der Existenz des GWs in [mm] $(\*)$ [/mm] aus?

(Und es geht sogar noch einfacher:
Ist denn
$$x [mm] \mapsto f(x):=\begin{cases} e^x, & \mbox{für } x \ge 0, & -e^x, & \mbox{für } x < 0\end{cases}$$ [/mm]
stetig in [mm] $x_0=0$? [/mm] (Als Abbildung [mm] $\IR \to \IR$.) [/mm]

Beste Grüße,
Marcel

Bezug
        
Bezug
Grenzwert berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 31.07.2010
Autor: melisa1

Hallo nochmal,

bei der zweiten habe ich mir überlegt, den links und rechtsseitigen GW zu betrachten.

links:

[mm] \limes_{x\rightarrow0^-} \bruch{e^x-1}{|x|} =\bruch{e^{-1}-1}{|-1|}=\bruch{e^{-1}-1}{1} [/mm]


ich glaube ich mache etwas falsch oder?


Lg Melisa

Bezug
                
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 31.07.2010
Autor: schachuzipus

Hallo nochmal,

> Hallo nochmal,
>  
> bei der zweiten habe ich mir überlegt, den links und
> rechtsseitigen GW zu betrachten.

Ganz genau so geht's !!

>  
> links:
>  
> [mm]\limes_{x\rightarrow0^-} \bruch{e^x-1}{|x|} =\bruch{e^{-1}-1}{|-1|} [/mm]

Hier stimmt was nicht!

Linksseitiger Limes [mm] $x\to [/mm] 0^-$ bedeutet, dass du dich mit $x$ von links an 0 heranpirscht, es ist also $x<0$

Damit $|x|=-x$

Also [mm] $\lim\limits_{x\to 0^-}\frac{e^x-1}{|x|}=\lim\limits_{x\to 0^-}\frac{e^x-1}{-x}=\frac{e^0-1}{0}=\frac{0}{0}$ [/mm]

Also wende de l'Hôpital an auf [mm] $\frac{e^x-1}{-x}$ [/mm]

Analog für den rechtsseitigen Limes.

Anstatt de l'Hôpital zu bemühen, bedenke, dass für den der linksseitigen Limes gilt:

[mm] $\lim\limits_{x\to 0^-}\frac{e^x-1}{-x}=-\lim\limits_{x\to 0^-}\frac{e^x-e^0}{x-0}=-f'(0)$ [/mm] mit [mm] $f(x)=e^x$ [/mm] (Diffenrenzenquotient für den linksseitigen Limes von [mm] $f(x)=e^x$) [/mm]


> [mm] =\bruch{e^{-1}-1}{1}[/mm] [/mm]
>  
>
> ich glaube ich mache etwas falsch oder?
>  
>
> Lg Melisa


Gruß

schachuzipus

Bezug
                
Bezug
Grenzwert berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Sa 31.07.2010
Autor: Marcel

Hallo,

> Hallo nochmal,
>  
> bei der zweiten habe ich mir überlegt, den links und
> rechtsseitigen GW zu betrachten.
>  
> links:
>  
> [mm]\limes_{x\rightarrow0^-} \bruch{e^x-1}{|x|} =\bruch{e^{-1}-1}{|-1|}=\bruch{e^{-1}-1}{1}[/mm]
>  
>
> ich glaube ich mache etwas falsch oder?
>  
>
> Lg Melisa

ja, wieso geht bei Dir z.B. im Nenner [mm] $|x|\,$ [/mm] über in [mm] $|-1\,|$ [/mm] bei $x [mm] \to [/mm] 0^-$? (Irgendwie steht da komischerweise sehr oft eine [mm] $1\,,$ [/mm] wo man nicht weiß, wieso...)

Eine weitere Alternative, warum hier der GW nicht existiert, siehe etwa hier [mm] $\text{(}$ [/mm] gemeint ist der Zshg. zu
$$x [mm] \mapsto f(x):=\begin{cases} e^x, & \mbox{für } x \ge 0, & -e^x, & \mbox{für } x < 0\end{cases}\text{.)}$$ [/mm]

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de