www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Grenzwert bestimmen
Grenzwert bestimmen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Zweimal stetig diffbar.
Status: (Frage) beantwortet Status 
Datum: 18:22 Mi 19.01.2005
Autor: Faenol

Hi!

Hab ein Verständnisproblem:
Sei f zweimal stetig differenzierbar.
Das heißt ja, dass f''(x) stetig ist.

Nun soll ich den Grenzwert
[mm] \limes_{h\rightarrow\0} \bruch{f(a+2h)-f(a+h)-f(a+h)+f(a)}{h^{2}} [/mm]
berechnen.
Ein kleines Schulterzucken stellt sich da für mich ein.

Natürlich kann ich mir x=a+h definieren und komme einem "normalen" Differenzquotienten auch nahe, wenn ich den Bruch splitte...

h-> 0 immer, irgendwie hat der Editor gerad nen Problem...

[mm] \limes_{h\rightarrow\1}\bruch{f(x+h)-f(x)}{h^{2}}+ \limes_{h\rightarrow\0}\bruch{f(x-h)-f(x)}{h^{2}} [/mm]


Ersteres Teil entspricht natürlich [mm] \bruch{f'(x)}{h}, [/mm] aber h-> 0, wird das wieder unendlich groß.


Aber was bringt mir des alles ?

Jemand ne Idee ?

Faenôl

        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 19.01.2005
Autor: taura

Mh, also ich überleg mir grade warum in aller Welt da stehen könnte, dass die Funktion zweimal stetig diff'bar ist... ;-)
Da liegt doch eine Vermutung ziemlich nahe, was das sein könnte oder?

Bezug
                
Bezug
Grenzwert bestimmen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:33 Mi 19.01.2005
Autor: Faenol


> Mh, also ich überleg mir grade warum in aller Welt da
> stehen könnte, dass die Funktion zweimal stetig diff'bar
> ist... ;-)
>  Da liegt doch eine Vermutung ziemlich nahe, was das sein
> könnte oder?

HMM, nööööö, die Vermutung liegt im Dunklen. *g*
Versteh deine Gedanken nicht genau !

Kannst du das nochmal erklären ?

Faenôl

Bezug
                        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 19.01.2005
Autor: taura

Setz mal in den Differenzenquotienten für f'' statt f' wiederum den Differenzenquotienten für f' ein... Dann kommst du meines Erachtens genau auf den Term, den du berechnen sollst.
Wow, klingt das kompliziert, ich hoffe du verstehst was ich meine...

Bezug
                                
Bezug
Grenzwert bestimmen: Axooooooo
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Mi 19.01.2005
Autor: Faenol

Hi !

O.K, habs jetzt ! *g* *schwere Geburt* Dabei so leicht !

Das heißt, dass der Ausdruck dann gleich f''(x) ist !

Faenôl

Bezug
                                        
Bezug
Grenzwert bestimmen: Bingo
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Mi 19.01.2005
Autor: taura

So könnte man das sehen ;-) Gratulation :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de