www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert bestimmen
Grenzwert bestimmen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert bestimmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:22 So 25.01.2009
Autor: Delta-1656

Aufgabe
Bestimmen Sie folgende Grenzwerte:
a) [mm] \limes_{x\rightarrow\0} (\wurzel{1+x}- \wurzel{1-x})/x [/mm]
b) [mm] \limes_{x\rightarrow\infty} [/mm] ( [mm] \wurzel{(x(x+a))} [/mm] -x)

Guten Abend erstmal =D

Ich hoffe, ihr könnt mir ein wenig weiterhelfen!

Bei der a) ist mir zwar klar, dass der Grenzwert 1 sein muss, aber ich weiß nicht so recht, wie ich das mathematisch korrekt aufschreibe!

Lg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Grenzwert bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 So 25.01.2009
Autor: Delta-1656

Oh, da fehlt was bei der a)

x soll gegen 0 gehen

Bezug
        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 So 25.01.2009
Autor: Martinius

Hallo,

> Bestimmen Sie folgende Grenzwerte:
>  a) [mm]\limes_{x\rightarrow\0} (\wurzel{1+x}- \wurzel{1-x})/x[/mm]
>  
> b) [mm]\limes_{x\to \infty}[/mm] ( [mm]\wurzel{(x(x+a))}[/mm] -x)
>  Guten Abend erstmal =D
>  
> Ich hoffe, ihr könnt mir ein wenig weiterhelfen!
>  
> Bei der a) ist mir zwar klar, dass der Grenzwert 1 sein
> muss, aber ich weiß nicht so recht, wie ich das
> mathematisch korrekt aufschreibe!


Ich habe da einen anderen Grenzwert heraus. Dir ist klar, dass sich erst einmal ein unbestimmter Ausdruck ergibt?

[mm]\limes_{x\rightarrow 0} \bruch{\wurzel{1+x}- \wurzel{1-x}}{x}=\bruch{0}{0}[/mm]

Da sich dahinter alles mögliche verbergen kann solltest Du Hrn. de L'Hospital bemühen.


  
LG, Martinius

Bezug
        
Bezug
Grenzwert bestimmen: Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 20:02 So 25.01.2009
Autor: Martinius

Hallo,

bei der 2. Aufgabe hast Du ja auch einen unbestimmten Ausdruck der Art:

[mm] $\limes_{x \to \infty}(u(x)-v(x))= \infty-\infty$ [/mm]


Dieser lässt sich durch eine elementare Umformung auf den Typ

[mm] $\bruch{0}{0}$ [/mm]

zurückführen, welchen man dann mit der Grenzwertregel von Bernoulli und de l'Hospital bearbeiten kann.

Die Umformung geht so:


$u(x)-v(x) = [mm] \bruch{\bruch{1}{v(x)}-\bruch{1}{u(x)}}{\bruch{1}{u(x)*v(x)}}$ [/mm]

oder besser lesbar

$u(x)-v(x) = [mm] \left(\bruch{1}{v(x)}-\bruch{1}{u(x)}\right) *\left(\bruch{1}{u(x)*v(x)}\right)^{-1}$ [/mm]


LG, Martinius

Bezug
        
Bezug
Grenzwert bestimmen: SchulMatheLexikon
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 26.01.2009
Autor: informix

Hallo Delta-1656 und [willkommenmr],

> Bestimmen Sie folgende Grenzwerte:
>  a) [mm]\limes_{x\rightarrow\0} (\wurzel{1+x}- \wurzel{1-x})/x[/mm]
>  
> b) [mm]\limes_{x\rightarrow\infty}[/mm] ( [mm]\wurzel{(x(x+a))}[/mm] -x)
>  Guten Abend erstmal =D
>  
> Ich hoffe, ihr könnt mir ein wenig weiterhelfen!
>  
> Bei der a) ist mir zwar klar, dass der Grenzwert 1 sein
> muss, aber ich weiß nicht so recht, wie ich das
> mathematisch korrekt aufschreibe!
>  

[guckstduhier] MBHospital in unserem MBSchulMatheLexikon.


Gruß informix

Bezug
        
Bezug
Grenzwert bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mo 26.01.2009
Autor: Teufel

Hi!

Als Alternative kannst du auch die Brüche erweitern. Bei a) mit [mm] \wurzel{1+x}+\wurzel{1-x} [/mm] und bei b) mit [mm] \wurzel{(x(x+a))}+x. [/mm]

Dadurch kannst du immer die 3. binomische Formel anwenden und die Brüche noch etwas kürzen. Dann kannst du bequem den Grenzwert ablesen ohne dich mit den (in dem Fall lästigen) Ableitungen rumzuplagen.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de