www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert der Reihe 1/k^2
Grenzwert der Reihe 1/k^2 < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert der Reihe 1/k^2: Fehler
Status: (Frage) beantwortet Status 
Datum: 12:46 Sa 09.12.2006
Autor: GorkyPark

Mahlzeit!

Also ich habe da irgendwo einen Fehler gemacht. Ich hoffe ihr könnt mir helfen.

Der Grenzwert der Reihe [mm] \summe_{i=1}^{\infty} \bruch{1}{k^{2}} [/mm] ist ja [mm] \pi^{2}/6. [/mm]

Ich wollte das mit dem Quotientenkriterium überprüfen.

Das heisst es muss gelten [mm] \bruch{a_{n+1}}{a_{n}}\le [/mm] q für fast alle n

wobei q zwischen 0 und 1 liegt.

[mm] \bruch{a_{n+1}}{a_{n}}=\bruch{1/(k+1)^{2}}{1/k^{2}} [/mm] = [mm] \bruch{k^2}{(k+1)^{2}}. [/mm]

Diese Folge konvergiert gegen 1. Also kann man kein  solches q finden, da die Folge gegen 1 strebt.
Daraus folgt, dass die Reihe divergiert. Das is aber nicht der Fall.

Kann mir jemand sagen wo mein Fehler ist? Vielen DAnk für eure Bemühungen!

GorkyPArk  

        
Bezug
Grenzwert der Reihe 1/k^2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Sa 09.12.2006
Autor: Zwerglein

Hi, GorkyPark,

Das Ergebnis 1 sagt Dir lediglich, dass Du das Quotientenkriterium hier nicht anwenden kannst!
Du darfst daraus nicht schließen, dass die Reihe divergiert!

Schau dazu auch mal hier:
[]http://www.math-kit.de/2003/content/RH-PB-XML-cob//Manifest308/quotkriterium.html

mfG!
Zwerglein

Bezug
                
Bezug
Grenzwert der Reihe 1/k^2: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:40 Sa 09.12.2006
Autor: GorkyPark

Danke Zwerglein für die schnelle Antwort.

Ich hab genauer nachgelesen und hab herausgefunden, dass ich nicht auf die Divergenz schliessen kann. Das könnte ich nur wenn [mm] \bruch{1/(k+1)^{2}}{1/k^{2}} \ge [/mm] 1 wäre. Das ist ja aber nicht der Fall. Denn diese Folge konvergiert gegen 1 aber von 0 aus.


Wi könnte ich nun zeigen dass diese Reihe [mm] \summe_{i=1}^{\infty} \bruch{1}{k^{2}} [/mm] wirklich konvergiert? Welches Kriterium sollte ich da anwenden? (Für das Majorantenkriterium weiss ich nur, dass die Reihe von [mm] \bruch{1}{k} [/mm] ja divergiert.)

MfG

GorkyPark

Bezug
                        
Bezug
Grenzwert der Reihe 1/k^2: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Di 12.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de