www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Grenzwert einer Funktion
Grenzwert einer Funktion < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Funktion: Berechnung einer Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:24 So 06.02.2011
Autor: sirco

Aufgabe
Berechnen Sie die folgenden Grenzwerte (sofern diese existiere).

5.
[mm] \limes_{n\rightarrow\infty} 1+\bruch{1}{n}+(-1)^n [/mm]

Hallo zusammen,

habe eine Grenzwertaufgabe bekommen, bei der ich ein wenig unsicher bin.

[mm] \bruch{1}{n} [/mm] strebt doch gegen [mm] +\infty, [/mm] also divergiert.
[mm] (-1)^n [/mm] ist eine alternierende Folge und somit kommt entweder +1 oder -1 raus.
1+ ist ja im Prinzip bei der alternierenden Folge mit berücksichtigt. Die denke ich mir mal sinngemäß weg.

Was ist denn nun mein Grenzwert, oder habe ich überhaupt einen?

        
Bezug
Grenzwert einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 So 06.02.2011
Autor: M.Rex

Hallo

Schreib dir doch die ersten 10 Folgenglieder mal auf:

[mm] a_{1}=1+\frac{1}{1}+(-1)^1=2 [/mm]
[mm] a_{2}=1+\frac{1}{2}+(-1)^2=2\frac{1}{2} [/mm]
[mm] a_{3}=1+\frac{1}{3}+(-1)^3=\frac{1}{3} [/mm]
[mm] a_{4}=1+\frac{1}{4}+(-1)^4=2\frac{1}{4} [/mm]
[mm] a_{5}=1+\frac{1}{5}+(-1)^5=\frac{1}{5} [/mm]
[mm] a_{6}=1+\frac{1}{6}+(-1)^6=2\frac{1}{6} [/mm]
[mm] a_{7}=1+\frac{1}{7}+(-1)^7=\frac{1}{7} [/mm]
[mm] a_{8}=1+\frac{1}{8}+(-1)^8=2\frac{1}{8} [/mm]
[mm] a_{9}=1+\frac{1}{9}+(-1)^9=\frac{1}{9} [/mm]
[mm] a_{10}=1+\frac{1}{10}+(-1)^{10}=2\frac{1}{10} [/mm]

Und
[mm] a_{999}=1+\frac{1}{999}+(-1)^{99}=\frac{1}{999} [/mm]
[mm] a_{1000}=1+\frac{1}{1000}+(-1)^{1000}=2\frac{1}{1000} [/mm]

Erahnst du jetzt das Problem, was sich ergibt, wenn du den Grenzwert bestimmen musst. Was hast du denn stattdessen? Zwei sogenannte H.......punkte.

Marius


Bezug
                
Bezug
Grenzwert einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 06.02.2011
Autor: sirco

Besten Dank für die Rückmeldung.

Also bei [mm] (-1)^n [/mm] habe ich zwei Häufungspunkte und daher gibt es laut Definition keinen Grenzwert.
Da [mm] \bruch{1}{n} [/mm] gegen [mm] \infty [/mm] strebt gibt es auch hier keinen Grenzwert.

Die Lösung müßte dann wohl lauten, das für Aufgabe 5 kein Grenzwert existiert.

Habe mir eben auch mal den Graph skizziert, anhand deines Hinweises, mir mal jedes Folgeglied anzusehen. Der Graph steigt und fällt abwechselnd.

Bezug
                        
Bezug
Grenzwert einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 So 06.02.2011
Autor: M.Rex


> Besten Dank für die Rückmeldung.
>  
> Also bei [mm](-1)^n[/mm] habe ich zwei Häufungspunkte und daher
> gibt es laut Definition keinen Grenzwert.
>  Da [mm]\bruch{1}{n}[/mm] gegen [mm]\infty[/mm] strebt gibt es auch hier
> keinen Grenzwert.

Fast, es gilt aber [mm] \lim_{n\to\infty}\frac{1}{n}=0 [/mm]

>  
> Die Lösung müßte dann wohl lauten, das für Aufgabe 5
> kein Grenzwert existiert.

Korrekt, du hast stattdessen zwei Häufungspunkte.

>  
> Habe mir eben auch mal den Graph skizziert, anhand deines
> Hinweises, mir mal jedes Folgeglied anzusehen. Der Graph
> steigt und fällt abwechselnd.

Das stimmt so leider nicht, auch wenn du vielleicht das richtige meinst. Da [mm] n\in\IN, [/mm] gibt es nur einige Punkte, und da kann man so ohnne weiteres nicht von Fallen oder Steigen sprechen. Du hast einfach nur die beiden Häufungspunkte der Folge.


Bezug
                                
Bezug
Grenzwert einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 So 06.02.2011
Autor: sirco

Stimmt ja, da hatte ich wohl einen Denkfehler: $ [mm] \lim_{n\to\infty}\frac{1}{n}=0 [/mm] $ .

Ok, klar, also habe ich im Prinzip nur zwei Häufungspunkte bei -1 und 1.

Achja, $ [mm] n\in\IN [/mm] $ , da haben "Kommazahlen" in meinem Graph natürlich nix zu suchen :)

Besten Dank für deine super Hilfe, du hast mir den Sonntag gerettet :)

Bezug
                                        
Bezug
Grenzwert einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 So 06.02.2011
Autor: M.Rex


> Stimmt ja, da hatte ich wohl einen Denkfehler:
> [mm]\lim_{n\to\infty}\frac{1}{n}=0[/mm] .

Yep

>  
> Ok, klar, also habe ich im Prinzip nur zwei Häufungspunkte
> bei -1 und 1.

Nein, die liegen woanders.

>  
> Achja, [mm]n\in\IN[/mm] , da haben "Kommazahlen" in meinem Graph
> natürlich nix zu suchen :)
>  

Bei Folgen (und n ist meistens ein Indiz, dass es um folgen geht) ist das meistens so.


> Besten Dank für deine super Hilfe, du hast mir den Sonntag
> gerettet :)

Schön zu hören. Schau aber nochmal deine Häufungspunkte an.


Bezug
                                                
Bezug
Grenzwert einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 So 06.02.2011
Autor: sirco

Hmm liegen die Häufungspunkte bei 2 und 0? Ich muss ja noch die 1 betrachten, die in der Funktion steht.

Wie würde ich eine Antwort für diese Aufgabe notieren? Gibt es eine mathematisch korrekte Schreibweise, mit der ich darstelle, das keine Grenzwerte existieren oder schreibt man das üblicherweise einfach in Textform auf?

Bezug
                                                        
Bezug
Grenzwert einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 So 06.02.2011
Autor: M.Rex


> Hmm liegen die Häufungspunkte bei 2 und 0? Ich muss ja
> noch die 1 betrachten, die in der Funktion steht.

Yep.

>  
> Wie würde ich eine Antwort für diese Aufgabe notieren?
> Gibt es eine mathematisch korrekte Schreibweise, mit der
> ich darstelle, das keine Grenzwerte existieren oder
> schreibt man das üblicherweise einfach in Textform auf?

Das kann man ruhig in Textform notieren. Schreibe, dass es zwei Häufungspunkte gibt, und dass es daher keinen Grenzwert geben kann.


Bezug
                                                                
Bezug
Grenzwert einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 So 06.02.2011
Autor: sirco

Also nochmal, vielen herzlichen Dank.
Schwere Geburt, aber nun hab ichs zu 100% verstanden ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de