www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwert einer Reihe
Grenzwert einer Reihe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert einer Reihe: Korrektur bitte :)
Status: (Frage) beantwortet Status 
Datum: 15:11 So 12.08.2007
Autor: Lars_B.

Aufgabe
2. Gegeben ist die Zahlenfolge [mm]1,\bruch{5}{6},\bruch{7}{11},\bruch{9}{18},\bruch{11}{27},....[/mm]
a.) Ermitteln Sie und [mm] a_n [/mm] und [mm] \limes_{n\rightarrow\infty} a_n [/mm] = g
b.) Berechnen Sie die Zahl [mm] n_0 [/mm] für die gilt, dass | [mm] a_n [/mm] - g | < [mm] \bruch{1}{10} [/mm] für alle [mm] n>n_0 [/mm]

a)
[mm] a_n [/mm] = [mm] \bruch{2n + 1}{n^2+2} [/mm]

[mm] \limes_{n\rightarrow\infty} \bruch{2n+1}{n^2+2} = \limes_{n\rightarrow\infty} \bruch{1}{n} = 0 [/mm]

Frage:
Kann man bei Grenzwerten allgemein sagen, dass sobald ein Exponent (bei positiven Zahlen) im Nenner höher ist als im Zähler das Ganze gegen Null strebt, andersrum gegen unendlich und nur bei gleichen Exponenten gegen eine Zahl ?

b)
Muss ich hier die Folge nach n auflösen und [mm] \varepsilon [/mm] von n abziehen ?

Danke
Grüße
Lars

        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 So 12.08.2007
Autor: schachuzipus

Hallo Lars,


> 2. Gegeben ist die Zahlenfolge
> [mm]1,\bruch{5}{6},\bruch{7}{11},\bruch{9}{18},\bruch{11}{27},....[/mm]
>  a.) Ermitteln Sie und [mm]a_n[/mm] und [mm]\limes_{n\rightarrow\infty} a_n[/mm]
> = g
>  b.) Berechnen Sie die Zahl [mm]n_0[/mm] für die gilt, dass | [mm]a_n[/mm] -
> g | < [mm]\bruch{1}{10}[/mm] für alle [mm]n>n_0[/mm]
>  a)
>  [mm]a_n[/mm] = [mm]\bruch{2n + 1}{n^2+2}[/mm] [daumenhoch]
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{2n+1}{n^2+2} = \limes_{n\rightarrow\infty} \bruch{1}{n} = 0[/mm] [ok]
>  
> Frage:
>  Kann man bei Grenzwerten allgemein sagen, dass sobald ein
> Exponent (bei positiven Zahlen) im Nenner höher ist als im
> Zähler das Ganze gegen Null strebt [ok] , andersrum gegen
> unendlich [ok] und nur bei gleichen Exponenten gegen eine Zahl
> ? ;-) wenn man annimmt, dass 0 keine Zahl ist...  JA kann man

> b)
>  Muss ich hier die Folge nach n auflösen und [mm]\varepsilon[/mm]
> von n abziehen ?

Hier musst du die Ungleichung [mm] \left|\frac{2n+1}{n^2+2}-\red{0}\right|=\frac{2n+1}{n^2+2}<\frac{1}{10} [/mm] lösen

Dazu multipliziere die Ungleichung mit [mm] n^2+2, [/mm] bringe alles auf eine Seite und mach ne quadrat. Ergänzung...

Dann das erste größere ganzzahlige (natürliche) n nehmen, das passt ;-)

  

> Danke
>  Grüße
>  Lars


Selber Gruß

schachuzipus

Bezug
                
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 So 12.08.2007
Autor: HJKweseleit

Wenn der Exp. im Zähler höher als im Nenner ist, kann natürlich auch - [mm] \infty [/mm] herauskommen.

Bezug
                
Bezug
Grenzwert einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 So 12.08.2007
Autor: Lars_B.

Hallo schachuzipus,


> Hier musst du die Ungleichung
> [mm]\left|\frac{2n+1}{n^2+2}-\red{0}\right|=\frac{2n+1}{n^2+2}<\frac{1}{10}[/mm]
> lösen
>  
> Dazu multipliziere die Ungleichung mit [mm]n^2+2,[/mm] bringe alles
> auf eine Seite und mach ne quadrat. Ergänzung...
>  
> Dann das erste größere ganzzahlige (natürliche) n nehmen,
> das passt ;-)

Oki :).

[mm] \bruch{2n+1}{n^2+2} [/mm] < [mm] \bruch{1}{10} [/mm] | * [mm] n^2+2 [/mm]
-> 2n+1 < [mm] \bruch{n^2 +2}{10} [/mm] | -2n -1
-> 0 < [mm] \bruch{n^2 +2}{10} [/mm] - 2n -1  | *10
-> 0 < [mm] n^2 [/mm] - 20n -8  
[mm]n_1 = 10 + 6 * \wurzel{3} \approx 20,4 [/mm]
n = 21

Danke Grüße
Lars

Bezug
                        
Bezug
Grenzwert einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 12.08.2007
Autor: schachuzipus

Hi Lars,

> Hallo schachuzipus,
>  
>
> > Hier musst du die Ungleichung
> >
> [mm]\left|\frac{2n+1}{n^2+2}-\red{0}\right|=\frac{2n+1}{n^2+2}<\frac{1}{10}[/mm]
> > lösen
>  >  
> > Dazu multipliziere die Ungleichung mit [mm]n^2+2,[/mm] bringe alles
> > auf eine Seite und mach ne quadrat. Ergänzung...
>  >  
> > Dann das erste größere ganzzahlige (natürliche) n nehmen,
> > das passt ;-)
>  
> Oki :).
>  
> [mm]\bruch{2n+1}{n^2+2}[/mm] < [mm]\bruch{1}{10}[/mm] | * [mm]n^2+2[/mm]
>  -> 2n+1 < [mm]\bruch{n^2 +2}{10}[/mm] | -2n -1

>  -> 0 < [mm]\bruch{n^2 +2}{10}[/mm] - 2n -1  | *10

>  -> 0 < [mm]n^2[/mm] - 20n -8  

> [mm]n_1 = 10 + 6 * \wurzel{3} \approx 20,4[/mm]
>  n = 21 [applaus]
>  
> Danke Grüße
>  Lars


Sieht prima aus ;-)

Gruß

schachuzipus

Bezug
        
Bezug
Grenzwert einer Reihe: rechnerisch
Status: (Antwort) fertig Status 
Datum: 15:37 So 12.08.2007
Autor: Loddar

Hallo Lars!


Durch Ausklammern der höchsten $n_$-Potenz kann man auch rechnerisch den Grenzwert bestimmen:

[mm] $\limes_{n\rightarrow\infty} \bruch{2n+1}{n^2+2} [/mm] \ = \ [mm] \limes_{n\rightarrow\infty} \bruch{n^2*\left(\bruch{2}{n}+\bruch{1}{n^2}\right)}{n^2*\left(1+\bruch{2}{n^2}\right)} [/mm] \ = \ [mm] \limes_{n\rightarrow\infty} \bruch{\bruch{2}{n}+\bruch{1}{n^2}}{1+\bruch{2}{n^2}} [/mm] \ = \  [mm] \bruch{\limes_{n\rightarrow\infty}\bruch{2}{n}+\limes_{n\rightarrow\infty}\bruch{1}{n^2}}{1+\limes_{n\rightarrow\infty}\bruch{2}{n^2}} [/mm] \ = \ [mm] \bruch{0+0}{1+0} [/mm] \ = \ [mm] \bruch{0}{1} [/mm] \ = \ 0$


Gruß
Loddar


Bezug
                
Bezug
Grenzwert einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:06 So 12.08.2007
Autor: HJKweseleit

Genauer: Durch Ausklammern der höchsten [mm]n_[/mm]-Potenz des Nenners (!) kann man auch
rechnerisch den Grenzwert bestimmen:
[mm]\limes_{n\rightarrow\infty} \bruch{2n^5+1}{-4n^2+2} \ = \ \limes_{n\rightarrow\infty} \bruch{n^2*\left(2n^3+\bruch{1}{n^2}\right)}{n^2*\left(-4+\bruch{2}{n^2}\right)} \ = \ \limes_{n\rightarrow\infty} \bruch{2n^3+\bruch{1}{n^2}}{-4+\bruch{2}{n^2}} \ = \ \bruch{\infty+\limes_{n\rightarrow\infty}\bruch{1}{n^2}}{-4+\limes_{n\rightarrow\infty}\bruch{2}{n^2}} \ = \ \bruch{\infty+0}{-4+0} \ = -\infty[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de