www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Grenzwert eines Integrals
Grenzwert eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert eines Integrals: Frage
Status: (Frage) beantwortet Status 
Datum: 10:16 Mo 06.06.2005
Autor: angela.h.b.

Hallo, Ihr alle,

im Verlauf einer Aufgabe möchte ich

[mm] \limes_{n\rightarrow\infty} \integral_{0}^{1} {(x^{n}-f(x))^2 dx} [/mm] bestimmen.

Kann ich da einfach sagen  [mm] \limes_{n\rightarrow\infty}x^{n}=0 [/mm]  ==>  [mm] \limes_{n\rightarrow\infty} \integral_{0}^{1} {(x^{n}-f(x))^2 dx}= \integral_{0}^{1} {(f(x))^2 dx} [/mm] ?

Warum ist das erlaubt, bzw. warum ist es nicht erlaubt?

Im voraus danke für Eure Hilfe
Angela

        
Bezug
Grenzwert eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mo 06.06.2005
Autor: banachella

Hallo!

> [mm]\limes_{n\rightarrow\infty}x^{n}=0[/mm]  ==>  

> [mm]\limes_{n\rightarrow\infty} \integral_{0}^{1} {(x^{n}-f(x))^2 dx}= \integral_{0}^{1} {(f(x))^2 dx}[/mm]  ?

Das ist deshalb etwas problematisch, weil [mm] $x^n\to [/mm] 0$ nur für [mm] $x\in [/mm] [0;1)$. Tatsächlich konvergiert die Folge [mm] $(x^n)$ [/mm] auch nicht gleichmäßig. Deshalb kannst du die Integration nicht einfach mit dem Limes vertauschen, zumindest, solange du mit dem Riemann-Integral arbeitest.
Ist $f(x)$ beschränkt? Dann könnte man nämlich so argumentieren:
[mm] $\int_0^1(x^n-f(x))^2dx=\int_0^1x^{2n}dx-2\int_0^1x^nf(x)dx+\int_0^1f(x)^2dx$. [/mm]
Dann ist [mm] $\int_0^1x^{2n}dx=\bruch{1}{2n+1}\to [/mm] 0$ und
[mm] $\left|\int_0^1x^nf(x)dx\right|\le \int_0^1x^n|f(x)|dx\le \int_0^1x^n\|f\|_\infty dx=\bruch{\|f\|_\infty}{n+1}\to [/mm] 0$.

Hilft dir das weiter? Sonst poste doch mal, wie $f$ genau aussieht!

Gruß, banachella


Bezug
                
Bezug
Grenzwert eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:02 Mo 06.06.2005
Autor: angela.h.b.


> Hilft dir das weiter?

Danke, banachella,

ich werde jetzt über eine Begründung für die Beschränktheit von f nachdenken, und ich bin ziemlich optimistisch, daß ich jetzt allein weiterkomme.

Sonst poste doch mal, wie [mm]f[/mm] genau

> aussieht!

Das geht nicht. f ist nur eine angenommene Funktion, von der ich zeigen will, daß es sie gar nicht gibt...

Gruß v. Angela


Bezug
                        
Bezug
Grenzwert eines Integrals: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Mo 06.06.2005
Autor: banachella

Hallo Angela!

> Sonst poste doch mal, wie [mm]f[/mm] genau
> > aussieht!
>  
> Das geht nicht. f ist nur eine angenommene Funktion, von
> der ich zeigen will, daß es sie gar nicht gibt...

So was kommt vor... Eins vielleicht noch: Es muss nicht unbedingt $f$ beschränkt sein. Es reicht auch vollkommen, wenn $x^nf$ beschränkt ist für ein [mm] $n\in\IN_0$... [/mm]

Gruß, banachella


Bezug
                                
Bezug
Grenzwert eines Integrals: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 20:20 Mo 06.06.2005
Autor: angela.h.b.



>  So was kommt vor... Eins vielleicht noch: Es muss nicht
> unbedingt [mm]f[/mm] beschränkt sein. Es reicht auch vollkommen,
> wenn [mm]x^nf[/mm] beschränkt ist für ein [mm]n\in\IN_0[/mm]...

Warum denn das?
Bitte banachella, kannst Du mir das Stichwort sagen, unter welchem ich nachschauen müßte?  (Ich habe nach einer gaaaaaaaanz langen Pause recht viel nicht mehr parat. Braucht man nicht beim Kochen...)
Aber für mein aktuelles Problem ist es nicht wichtig, glaube ich. Es sind stetig diffbare Funktionen auf kompakten Intervallen!

Danke und Gruß v. Angela



>  
> Gruß, banachella
>  


Bezug
                                        
Bezug
Grenzwert eines Integrals: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:02 Mi 08.06.2005
Autor: matux

Hallo Angela!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de