www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert geo Reihe
Grenzwert geo Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert geo Reihe: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 12:43 Mi 30.11.2011
Autor: Nicky-01

Aufgabe
$ [mm] \bruch{1}{1+a} \summe_{i=1}^{\infty} a^i [/mm] = [mm] \bruch{1}{1+a}\left(\summe_{i=0}^{\infty} a^i - 1\right) =\bruch{1}{1+a}\left( \bruch{1}{1-a} - 1\right) [/mm] = [mm] \bruch{1}{1+a} \bruch{1-(1-a)}{1-a} [/mm] = [mm] \dots [/mm] $

nochmal eie frage zu der aufgabe,
muss ich dass jetzt auf de gleichen nenner bringen?
sprich /bruch {1(1-a)-a(1+a)}{(1+a)(1-a)}
das wäre doch dann -a ? aber bringt mir das was für den Grenzwert?!
ich dachte nämlich erst dass |a|<1 konvergiert mit $ [mm] \bruch{1}{1-\bruch{a}{1+a}} [/mm] $

>  $ [mm] |a|\ge1 [/mm] $ divergiert

das ergebnis ist,
#aber das sieht mir auch falsch aus ...


        
Bezug
Grenzwert geo Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 30.11.2011
Autor: fred97


> [mm]\bruch{1}{1+a} \summe_{i=1}^{\infty} a^i = \bruch{1}{1+a}\left(\summe_{i=0}^{\infty} a^i - 1\right) =\bruch{1}{1+a}\left( \bruch{1}{1-a} - 1\right) = \bruch{1}{1+a} \bruch{1-(1-a)}{1-a} = \dots[/mm]
>  
> nochmal eie frage zu der aufgabe,
>  muss ich dass jetzt auf de gleichen nenner bringen?
>  sprich /bruch {1(1-a)-a(1+a)}{(1+a)(1-a)}


also meinst Du: sprich: [mm] \bruch{1(1-a)-a(1+a)}{(1+a)(1-a)} [/mm]


Auaaaaa, Auaaaaa


Aha, ich glaube, Du meinst, dass man 2 Brüche folgendermaßen multipliziert:

             [mm] \bruch{x}{y}*\bruch{u}{v}=\bruch{xv-uy}{yv} [/mm]

oder so ähnlich....

Mach Dir klar, was für ein großer Unfug das ist !

Denn es ist [mm] \bruch{xv-uy}{yv}= \bruch{x}{y}-\bruch{u}{v} [/mm]

Richtig: [mm] \bruch{x}{y}*\bruch{u}{v}=\bruch{xu}{yv} [/mm]

FRED

> das wäre doch dann -a ? aber bringt mir das was für den
> Grenzwert?!
>  ich dachte nämlich erst dass |a|<1 konvergiert mit
> [mm]\bruch{1}{1-\bruch{a}{1+a}}[/mm]
>  >  [mm]|a|\ge1[/mm] divergiert
>  das ergebnis ist,
>  #aber das sieht mir auch falsch aus ...
>  


Bezug
                
Bezug
Grenzwert geo Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Mi 30.11.2011
Autor: Nicky-01

ohhh mist ... hab ich total übersehen ...
danke ...
also hab ich dann [mm] \bruch {-a}{1-a^2} [/mm]

ist dann also mein |a|<1 konvergiert mit

> $ [mm] \bruch{1}{1+\bruch{a}{1+a2}} [/mm] $
>  >  $ [mm] |a|\ge1 [/mm] $ divergiert

oder ist das immer noch falsch?

Bezug
                        
Bezug
Grenzwert geo Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Mi 30.11.2011
Autor: fred97


> ohhh mist ... hab ich total übersehen ...
> danke ...
>  also hab ich dann [mm]\bruch {-a}{1-a^2}[/mm]

Auaaaaa, Auaaaa !


Es war ......= [mm] \bruch{1}{1+a} \bruch{1-(1-a)}{1-a}= \bruch{1}{1+a}*\bruch{1-1+a}{1-a}=\bruch{a}{1-a} [/mm]

Edit: natürlich [mm] \bruch{a}{1-a^2} [/mm]

>
> ist dann also mein |a|<1 konvergiert mit
>  > [mm]\bruch{1}{1+\bruch{a}{1+a2}}[/mm]


?????????????????????????????????

Die Reihe konvergiert für |a|<1 und hat den Wert [mm] \bruch{a}{1-a^2} [/mm]

FRED


>  >  >  [mm]|a|\ge1[/mm] divergiert
>
> oder ist das immer noch falsch?


Bezug
                                
Bezug
Grenzwert geo Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Mi 30.11.2011
Autor: Nicky-01

wie kommt ma denn von (1+a)(1-a)= (1-a) ?!
im grunde ist dass doch die 3. binomischeformel ...
also wäre das doch ausmultipliziert [mm] 1-a^2 [/mm]

Bezug
                                        
Bezug
Grenzwert geo Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mi 30.11.2011
Autor: M.Rex

Hallo

Du hast in der Tat recht, das ² scheint untergegangen zu sein.

[mm] \bruch{1}{1+a}\cdot\left(\bruch{1}{1-a}-1\right) [/mm]
[mm] =\bruch{1}{1+a}\cdot\left(\bruch{1}{1-a}-\frac{1-a}{1-a}\right) [/mm]
[mm] =\bruch{1}{1+a}\cdot\bruch{1-(1-a)}{1-a} [/mm]
[mm] =\bruch{1}{1+a}\cdot\bruch{a}{1-a} [/mm]
[mm] =\bruch{a}{(1+a)(1-a)} [/mm]
[mm] =\bruch{a}{1-a^{2}} [/mm]

Marius


Bezug
                                                
Bezug
Grenzwert geo Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Mi 30.11.2011
Autor: Nicky-01

ok, danke für die hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de