www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Grenzwert im Integralzeichen
Grenzwert im Integralzeichen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert im Integralzeichen: Schwere Frage
Status: (Frage) beantwortet Status 
Datum: 02:21 Mo 24.08.2020
Autor: Psychopath

Das Integral ist so nicht lösbar:
[mm] \integral_{-\infty}^{\infty}{ \limes_{n\rightarrow\infty}[e^{\bruch{1}{n}*|t|}]*e^{-j*\omega*t} dt } [/mm]

Das Integral wäre aber lösbar, wenn ich den Grenzwertübergang (limes) vor das Integral schreiben dürfte:
[mm] \limes_{n\rightarrow\infty}\integral_{-\infty}^{\infty}{ e^{\bruch{1}{n}*|t|}*e^{-j*\omega*t} dt } [/mm]

Die Frage ist: Darf ich das (oder darf ich es nicht), und warum darf ich das (oder nicht)?

Ich habe auch schon nachgedacht: Ich habe zuerst an den Satz über die "monotone Konvergenz einer Funktionenfolge" gedacht, der es erlaubt, das Limeszeichen vor das Integral zu schreiben. Aber da spricht folgendes dagegen:

1. Das Limes Zeichen gehört nur zum ersten Faktor. Darf ich es trotzdem rausziehen?
2. Falls nein, könnte man den zweiten (komplexen) Faktor in den Limes einschließen und dann das Limes rausziehen.
    Aber gilt der Satz auch für komplexe Folgen?

Also, wie würdet ihr vorgehen, um das Limes Zeichen vor das Integral zu bekommen?

Vielen Dank im voraus


        
Bezug
Grenzwert im Integralzeichen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 Mo 24.08.2020
Autor: Gonozal_IX

Hiho,

die Antworten solltest du dir selbst geben können…
> Das Integral ist so nicht lösbar:

>  [mm]\integral_{-\infty}^{\infty}{ \limes_{n\rightarrow\infty}[e^{\bruch{1}{n}*|t|}]*e^{-j*\omega*t} dt }[/mm]

Wenn du damit meinst, das Integral konvergiert nicht, dann ist das korrekt.
Lösbar ist es dennoch, es gilt nämlich schlichtweg:
[mm]\integral_{-\infty}^{\infty}{ \limes_{n\rightarrow\infty}[e^{\bruch{1}{n}*|t|}]*e^{-j*\omega*t} dt } = \integral_{-\infty}^{\infty}{1*e^{-j*\omega*t} dt }[/mm] und dieses Integral konvergiert nicht.

> Das Integral wäre aber lösbar, wenn ich den Grenzwertübergang (limes) vor das Integral schreiben dürfte:
> Die Frage ist: Darf ich das (oder darf ich es nicht), und
> warum darf ich das (oder nicht)?

Was sagt dir das, wenn du nach diesem Umformungsschritt ein konvergierendes Integral erhältst, obwohl es vorher nicht konvergierte?

> 2. Falls nein, könnte man den zweiten (komplexen) Faktor
> in den Limes einschließen und dann das Limes rausziehen.
> Aber gilt der Satz auch für komplexe Folgen?

Ja, die Grenzwertsätze gelten auch für komplexe Folgen.
Allerdings enthältst du dann keine Funktionenfolge, für den du den Satz der monotonen Konvergenz anwenden könntest.
Warum nicht?

> Also, wie würdet ihr vorgehen, um das Limes Zeichen vor das Integral zu bekommen?

Gar nicht, da es nicht geht.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de