www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwert rekursiver Folge
Grenzwert rekursiver Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert rekursiver Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Sa 27.11.2010
Autor: PaulW89

Aufgabe
Berechnen sie den Grenzwert der durch
[mm] a_{n+1}=\wurzel{a_{n}+1}, a_{0}=10 [/mm]
definierten, konvergenten Folge. Sie dürfen also vorraussetzen, dass die Folge konvergiert.

Hallo.
Ich verzweifle gerade an dieser Aufgabe. :-/ Ich weiß nicht, wo und wie ich beginnen soll. Daher kann ich zu dieser Frage auch keinen Lösungsansatz liefern.

Ich bitte um Hinweise zur allgemeinen Vorgehensweise bei einem solchen Problem, um Stichworte und Tipps im Allgemeinen. Ich habe bereits Wikipedia und Google bemüht, bin jedoch kein Stück weiter gekommen.

Gruß,
Paul!

        
Bezug
Grenzwert rekursiver Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Sa 27.11.2010
Autor: Godchie

Aufgabe
Berechnen sie den Grenzwert der durch
$ [mm] a_{n+1}=\wurzel{a_{n}+1}, a_{0}=10 [/mm] $
definierten, konvergenten Folge. Sie dürfen also vorraussetzen, dass die Folge konvergiert.

Also ich kenn die Rechenaufgabe hab jedoch noch schwiriegkeiten das hier richtig einzugeben deswegen jetzt schon sorry.


um [mm] a_{1} [/mm] zu bekommen:

[mm] a_{0+1}=\wurzel{a_{0}+1} [/mm]

[mm] a_{1}=\wurzel{10+1} [/mm]

[mm] a_{2} [/mm] ...

usw.

MfG Godchie

Bezug
                
Bezug
Grenzwert rekursiver Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Sa 27.11.2010
Autor: PaulW89

Hallo,
danke für deine Antwort! Das was du da schreibst, ist mir natürlich klar.
Aber ich soll ja den Grenzwert berechnen. Ich denke nicht, dass es ausreicht, einfach ein paar Folgenglieder aufzuzählen.

Gruß,
Paul!

Bezug
                
Bezug
Grenzwert rekursiver Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Sa 27.11.2010
Autor: abakus


> Aufgabe
>  Berechnen sie den Grenzwert der durch
>  [mm]a_{n+1}=\wurzel{a_{n}+1}, a_{0}=10[/mm]
>  definierten,
> konvergenten Folge. Sie dürfen also vorraussetzen, dass
> die Folge konvergiert.
>
> Also ich kenn die Rechenaufgabe hab jedoch noch
> schwiriegkeiten das hier richtig einzugeben deswegen jetzt
> schon sorry.

Hallo,
wenn die Zahlenfolge "fast an ihrem Grenzwert angekommen ist", unterscheiden sich die beiden Werte [mm] a_n [/mm] und [mm] a_{n+1} [/mm] kaum noch voneinander, und sie unterscheiden sich auch kaum noch vom Grenzwert a.
Es gilt also [mm] a_n\approx a_{n+1}\approx [/mm] a.
Aus [mm] a_{n+1}=\wurzel{a_{n}+1} [/mm] wird dann
[mm] a=\wurzel{a+1}. [/mm]
Löse diese Gleichung.
Gruß Abakus

>  
>
> um [mm]a_{1}[/mm] zu bekommen:
>  
> [mm]a_{0+1}=\wurzel{a_{0}+1}[/mm]
>  
> [mm]a_{1}=\wurzel{10+1}[/mm]
>  
> [mm]a_{2}[/mm] ...
>  
> usw.
>  
> MfG Godchie


Bezug
        
Bezug
Grenzwert rekursiver Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 27.11.2010
Autor: Sax

Hi,

1. Wenn die Folge [mm] (a_n) [/mm] konvergent ist und den Grenzwert a hat, dann ist die Folge [mm] (a_{n+1}) [/mm] auch konvergent und hat auch denselben Grenzwert a, denn [mm] (a_n) [/mm] hat ja sozusagen nur ein zusätzliches erstes Folgenglied.
2. Die Wurzelfunktion ist stetig, also gilt [mm] \limes_{n\rightarrow\infty}\wurzel{x_n} [/mm] = [mm] \wurzel{\limes_{n\rightarrow\infty}x_n} [/mm]

Du kannst a jetzt folgendermaßen berechnen :
Beginne mit           a = [mm] \limes_{n\rightarrow\infty}a_n [/mm] =
Hinweis 1 benutzen      = ...
Definition von [mm] a_{n+1} [/mm]      = ...
Hinweis 2 benutzen      = ...
Grenzwert einsetzen     = ...

Aus der Gleichheit der Terme ganz am Anfang und ganz am Ende lässt sich a ausrechnen.

Gruß Sax.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de