www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Grenzwert von Sekantensteigung
Grenzwert von Sekantensteigung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von Sekantensteigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 16.10.2007
Autor: marylou

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=\bruch{1}{x^{3}} [/mm] .
Bestimme rechnerisch die Ableitung f'(a) von f an einer beliebigen Stelle [mm] a\in\IR^\star [/mm] als Grenzwert von Sekantensteigungen.
Hinweis: Es ist [mm] u^{3}-v^{3}=(u-v)(u^{2}+uv+v²) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Halloo :)
Bei der Aufgabe fehlt mir der gesamte Ansatz, alleine die Variable a verwirrt mich, da sie ja in der funktion nicht vorkommt.
Für einen ersten Ansatz wäre ich seeeeeeehr dankbar :)

        
Bezug
Grenzwert von Sekantensteigung: Ansatz
Status: (Antwort) fertig Status 
Datum: 22:03 Di 16.10.2007
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo marylou!


Wenn Dich die Variable $a$ stört, kannst Du auch gerne $x_0$ schreiben oder so.

Für die Sekantensteigung $m_s$ zwischen zwei Punkten $P \ ( \ a \ | \ f(a) \ )$ und $Q \ ( \ x \ | \ f(x) \ )$ gilt folgende Formel:

$$m_s \ = \ \bruch{f(x)-f(a)}{x-a} \ = \ \bruch{\bruch{1}{x^3}-\bruch{1}{a^3}}{x-a}$$
Als Grenzwert der Sekantensteigung ist hier die Grenzwertbetrachtung $x\rightarrow a$ durchzuführen:
$$m_t \ = \ f'(a) \ = \ \limes_{x\rightarrow a}\bruch{f(x)-f(a)}{x-a} \ = \ \limes_{x\rightarrow a}\bruch{\bruch{1}{x^3}-\bruch{1}{a^3}}{x-a}}$$
Bringe nun die beiden Brüche im Zähler auf einen Hauptnenner, fasse zusammen und wende den genannten Umformungstipp an.

Gruß
Loddar


Bezug
                
Bezug
Grenzwert von Sekantensteigung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Di 16.10.2007
Autor: marylou

Danke schon mal :)
Aber es hapert immer noch :(

Habe nun das
[mm] f'(a)=\bruch{\bruch{1}{x^{3}} - \bruch{1}{a^{3}}}{x-a} [/mm]

      [mm] =\bruch{\bruch{1}{(x-a)*(x^2+xa+a^2)}}{x-a} [/mm]  |nun kann ich
oben und unten x-a kürzen

[mm] \bruch{1}{ax*(x+a)} [/mm] | kann ich dann x+ a wegfallen lassen?

Verstehe ich die Aufgabenstellung richtig, dass ich nur Gleichungen angeben soll und keine bestimmten Punkt die die Grenze bilden? Schließlich habe ich ja keine Werte bzw x- oder y- Werte gegeben?




Bezug
                        
Bezug
Grenzwert von Sekantensteigung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Di 16.10.2007
Autor: leduart

Hallo
> Danke schon mal :)
>  Aber es hapert immer noch :(
>  
> Habe nun das
> [mm]f'(a)=\bruch{\bruch{1}{x^{3}} - \bruch{1}{a^{3}}}{x-a}[/mm]
>  
> [mm]=\bruch{\bruch{1}{(x-a)*(x^2+xa+a^2)}}{x-a}[/mm]  |nun kann ich
> oben und unten x-a kürzen

diese Umformung ist leider ganz falsch.
du musst wirklich erst [mm] \bruch{1}{x^{3}} [/mm] - [mm] \bruch{1}{a^{3}} [/mm]
auf den Hauptnenner [mm] x^3*a^3 [/mm] bringen, dann die gegebene Formel benutzen, dann durch x-a kürzen und dann x gegen a
d.h. einfach x=a setzen.(weil ja dann im Nennerkeine 0 mehr entsteht)
Gruss leduart

> [mm]\bruch{1}{ax*(x+a)}[/mm] | kann ich dann x+ a wegfallen lassen?
>  
> Verstehe ich die Aufgabenstellung richtig, dass ich nur
> Gleichungen angeben soll und keine bestimmten Punkt die die
> Grenze bilden? Schließlich habe ich ja keine Werte bzw x-
> oder y- Werte gegeben?
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de