www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwertaufgabe
Grenzwertaufgabe < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:37 So 20.01.2008
Autor: macio

Aufgabe
Bestimmen sie den Grenzwert der Folge! Ist Sie konvergent oder divergent?

[mm] a_n=\bruch{1+\wurzel{n}}{n} [/mm]

Hallo, ich habe die Aufgabe zwar gelöst, bin mir aber nicht sicher, ob das so Stimmt:

[mm] a_n=\bruch{1+\wurzel{n}}{n} [/mm]

[mm] =\bruch{n*(\bruch{1}{n})+\wurzel{1}}{n} [/mm]

Habe ich hier richtig gekürzt?



        
Bezug
Grenzwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 So 20.01.2008
Autor: Andi

Hallo macio,

> [mm]a_n=\bruch{1+\wurzel{n}}{n}[/mm]
>  Hallo, ich habe die Aufgabe zwar gelöst, bin mir aber
> nicht sicher, ob das so Stimmt:

Zeig uns doch auch mal deine Lösung!
  

> [mm]a_n=\bruch{1+\wurzel{n}}{n}[/mm]
>  
> [mm]=\bruch{n*(\bruch{1}{n})+\wurzel{1}}{n}[/mm]

Du hast hier gar nicht gekürzt. Sondern einfach die [mm] \wurzel{n}[/mm]
weggelassen. Das geht natürlich nicht. :-)

[mm]\bruch{n*(\bruch{1}{n})+\wurzel{1}}{n}=\bruch{1+1}{n}\not=\bruch{1+\wurzel{n}}{n}[/mm]


Bezug
                
Bezug
Grenzwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 So 20.01.2008
Autor: macio

kann ich überhaupt die [mm] \wurzel{n} [/mm] im zähler wegkürzen?

Bezug
                        
Bezug
Grenzwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 So 20.01.2008
Autor: Andi

also wenn  n > 0 könnte man mal folgendes probieren:

[mm] \bruch{1+\wurzel{n}}{n}= \bruch{\wurzel{n}*(\bruch{1}{\wurzel{n}}+1)}{\wurzel{n}*\wurzel{n}}=\bruch{\bruch{1}{\wurzel{n}}+1}{\wurzel{n}} [/mm]

Bezug
                                
Bezug
Grenzwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 So 20.01.2008
Autor: macio

Also kann man jetzt doch die Grezüberschreitung durchführen, oder?
Das wäre dann [mm] \bruch{1}{\infty}=0 [/mm]

Stimmt das?

Bezug
                                        
Bezug
Grenzwertaufgabe: richtig!
Status: (Antwort) fertig Status 
Datum: 13:39 So 20.01.2008
Autor: Loddar

Hallo Macio!


[daumenhoch] !! Richtig ...

Allerdings hätte ich bei dieser Aufgabe von vornherein $n_$ ausgeklammert und gekürzt (da $n \ = \ [mm] n^1$ [/mm] die höchste Potenz im Bruch ist).


Gruß
Loddar


Bezug
                                                
Bezug
Grenzwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 So 20.01.2008
Autor: macio

Ja genau!

Wie kann ich denn n ausklammern?? Das Problem stellt die Wurzel dar!

Bezug
                                                        
Bezug
Grenzwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 So 20.01.2008
Autor: steppenhahn

[mm] \wurzel{n} [/mm] = [mm] \bruch{\wurzel{n}}{\wurzel{n}}*\wurzel{n} [/mm] = [mm] \bruch{\wurzel{n}*\wurzel{n}}{\wurzel{n}} [/mm] = [mm] \bruch{n}{\wurzel{n}} [/mm]

n ausklammern -->

n * [mm] \bruch{1}{\wurzel{n}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de