www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Grenzwertberechnung
Grenzwertberechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: l'hospital
Status: (Frage) beantwortet Status 
Datum: 11:55 Di 01.03.2005
Autor: spacephreak

Hallo ihr
Ich habe bei einer Grenzwertbetrachtung Probleme, hoffe ihr könnt mir helfen:
[mm] \limes_{x\rightarrow x^{-}} [/mm] ln(x)ln(1-x)
Um einen "Typen" zu haben, bringe ich ln(1-x) in den Nenner:
[mm] \limes_{x\rightarrow x^{-}} \bruch{ln(x)}{\bruch{1}{ln(1-x)}} [/mm]
Jetzt habe ich den Typ 0/0 und kann den l`hospital benutzen:
[mm] \limes_{x\rightarrow x^{-}} \bruch{ln²(1-x)}{\bruch{x}{(1-x)}} [/mm]
Nun haben wir hierzu geschrieben, das der Typ 0/0 zu finden ist. Aber ln²(1-x)  ist für mich unendlich. Oder sehe ich das falsch?
Ich bedanke mich jetzt schon mal für alle Ideen/Hilfe
Mfg
Markus

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Di 01.03.2005
Autor: Max


> Hallo ihr

Hallo du

>  Ich habe bei einer Grenzwertbetrachtung Probleme, hoffe
> ihr könnt mir helfen:
>   [mm]\limes_{x\rightarrow x^{-}}[/mm] ln(x)ln(1-x)

Was meinst du [mm] $\lim_{x \to x^{-}} \ln(x) \cdot \ln(1-x)$? [/mm] Wofür steht denn [mm] $x^{-}$? [/mm] Weder [mm] $\pm \infty$ [/mm] kann es sein, und ansonsten kann man doch nur Werte aus dem Intervall $[0;1]$ nehmen, oder irre ich mich da?

Ich gehe jetzt mal davon aus, dass dich die Grenzwerte für $x [mm] \to [/mm] 0$ bzw. $x [mm] \to [/mm] 1$ interessieren.

Linksseitiger Grenzwert für $x [mm] \to [/mm] 1$:

[mm] $\lim_{x \to 1}\ln(x)\cdot \ln(1-x)=\lim_{x \to 1} \frac{\ln(1-x)}{\frac{1}{\ln(x)}}=\lim_{x \to 1} \frac{-\frac{1}{1-x}}{\frac{1}{x\cdot \ln^2(x)}}=\lim_{x \to 1}\frac{x\cdot \ln^2(x)}{x-1}=\lim_{x \to 1} \frac{\ln^2(x)+2x\cdot \ln^2(x) \cdot \frac{1}{x}}{1}=\lim_{x \to 1}\left(\ln^2(x)+2\ln(x)\right)=0$ [/mm]

Wegen der Symmetrie zu [mm] $x=\frac{1}{2}$ [/mm] gilt analog [mm] $\lim_{x \to 0}\ln(x)\cdot \ln(1-x)=0$. [/mm]

Gruß Brackhaus

Bezug
                
Bezug
Grenzwertberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Di 01.03.2005
Autor: spacephreak

Hallo
Entschuldige, das sollte   [mm] 1^{-} [/mm] bedeuten.  Aber ist ja nicht ganz so schlimm, weil du es ja damit gerechnet hast. Das - an der 1 sollte bedeuten, das man aus dem negativen kommt, wie du es glaube ich auch so verstanden hast (mit linksseitig)
Danke für deine Lösung.
Mfg
markus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de