www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwertberechnung
Grenzwertberechnung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:05 So 03.03.2013
Autor: amarus

Aufgabe
[mm] \limes_{n\rightarrow\ 0} \bruch{x}{e^x-1} [/mm] = 1

Ich verstehe nicht warum das korrekt ist ! Ich weiß das [mm] \limes_{n\rightarrow\ 0} \bruch{x}{e^x} [/mm] = 1 falsch ist ! Ich frage mich nun, warum die -1 das ergebnis verändert, wo sie doch bei der Ableitung sowieso wegfällt...

kann mir da bitte jemand auf die sprünge helfen ?!

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 So 03.03.2013
Autor: Sax

Hi,

wenn dein Hinweis auf die Ableitung bedeuten soll, dass du den Grenzwert (muss übrigens x ->0 ,  nicht n -> 0 heißen) mit l'Hospital berechnen willst, dann ist das eine ganz gute Idee, weil die Voraussetzung erfüllt ist (nachweisen!).
Dann musst du aber auch im Zähler die richtige Ableitung der Zählerfunktion benutzen, und die ist nicht x.

Gruß Sax.

Bezug
                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 So 03.03.2013
Autor: amarus

hmm ich glaube ich habe mich da etwas doof ausgdrückt... es sind im grunde zwei aufgaben:

1)

[mm] \limes_{x\rightarrow\ 0} \bruch{x}{e^x-1} [/mm] = 1

2)

[mm] \limes_{x\rightarrow\ 0} \bruch{x}{e^x} [/mm] = 1



so ich weiß, dass die erste korrekt ist und die zweite ist falsch ( hat der prof bereits mitgeteilt )

Ich frage mich aber nun wie er auf die ergebnisse kommt ?!



Bezug
                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 03.03.2013
Autor: Sax

Hi,

den ersten Grenzwert berechnest du mit l'Hospital, den zweiten durch direktes Einsetzen.

Gruß Sax.

Bezug
                                
Bezug
Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 So 03.03.2013
Autor: amarus

ahhhhh ok !

also wäre folgender rechenweg korrekt ?

f(x) = x ; f'(x) = 1

g(x) = [mm] e^x-1 [/mm]  ;    g'(x) = [mm] e^x [/mm]

wenn ich jetzt x->0 setze erhalte ich :

[mm] \bruch{1}{e^0} [/mm] , was 1 liefert ?!

Bezug
                                        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 So 03.03.2013
Autor: notinX

Hallo,

> ahhhhh ok !
>
> also wäre folgender rechenweg korrekt ?
>
> f(x) = x ; f'(x) = 1
>  
> g(x) = [mm]e^x-1[/mm]  ;    g'(x) = [mm]e^x[/mm]
>  
> wenn ich jetzt x->0 setze erhalte ich :
>
> [mm]\bruch{1}{e^0}[/mm] , was 1 liefert ?!

der Rechenweg ist ok, aber ich würde es auf einem Übungszettel nicht unbedingt so aufschreiben.

Gruß,

notinX

Bezug
        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 06:12 Mo 04.03.2013
Autor: fred97

[mm] f(x):=e^x [/mm]

[mm] \bruch{e^x-1}{x}=\bruch{f(x)-f(0)}{x-0} \to [/mm] f'(0)=1   für x [mm] \to [/mm] 0

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de