www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte
Grenzwerte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:36 Sa 02.04.2011
Autor: chesn

Aufgabe
Gebe den Grenzwert an, oder begründe, warum er nicht existiert:

(a) [mm] \limes_{x\rightarrow3}\bruch{x^2-9}{|x-3|} [/mm] (b) [mm] \limes_{x\rightarrow-3}\bruch{x^2-9}{|x-3|} [/mm]

Hallo! Stehe gerade etwas auf dem Schlauch und weiss nicht genau, wie ich die Aufgabe richtig lösen kann.

Habe mehrer Möglichkeiten zur Auswahl:

(a) [mm] \limes_{x\rightarrow3}\bruch{x^2-9}{|x-3|} [/mm] = [mm] \limes_{x\rightarrow3}\bruch{(x-3)*(x+3)}{|x-3|} [/mm] (*)

Darf ich an der Stelle denn jetzt kürzen? Weiss gerade nicht mit dem Betrag umzugehen. Ich mach mal mit Kürzen weiter:

(*) = [mm] \limes_{x\rightarrow3}(x+3) [/mm] = 6 (?)

Andererseits kann man argumentieren, dass [mm] \limes_{x\rightarrow3}\bruch{x^2-9}{|x-3|}=\bruch{9-9}{|3-3|}=\bruch{0}{0}\Rightarrow [/mm] Widerspruch, da man nicht durch 0 teilen darf.

Was ist hier richtig? Oder muss ich da vielleicht mit L'Hospital ran gehen?

Zu b melde ich mich besser erst, wenn ich a verstanden habe..

Vielen Dank schonmal!


        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 02.04.2011
Autor: Kayle

Hallo,


> Was ist hier richtig? Oder muss ich da vielleicht mit
> L'Hospital ran gehen?
>  

Find ich ne gute Idee (aber durch das Kürzen kommt man hier auf den selben Ausdruck). Apropos l'Hopital, den wendet man doch gerade in dem  Fall [mm] "\bruch{0}{0}" [/mm] an - damit sollte sich die Frage auch geklärt haben.

Gruß
Kayle

> Zu b melde ich mich besser erst, wenn ich a verstanden
> habe..
>  
> Vielen Dank schonmal!
>  


Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 02.04.2011
Autor: chesn

Damit ergibt sich dann ein Problem beim Ableiten:

Für $x > 3$ gilt: $g(x) =   x-3 [mm] \Rightarrow [/mm] g'(x)= 1$
Für $x < 3$ gilt: $g(x) = -(x-3) [mm] \Rightarrow [/mm] g'(x)=-1$

Was gilt jetzt für $x=3$? Beides? Dann habe ich zwei Grenzwerte mit L'Hospital (?!) :

[mm] \limes_{x\to3}\bruch{x^2-9}{x-3}=\bruch{2x}{1}=6 [/mm] und [mm] \limes_{x\to3}\bruch{x^2-9}{x-3}=\bruch{2x}{-1}=-6 [/mm]

Habe den Funktionsgraphen mal zeichnen lassen, damit komme ich auch graphisch auf dieses Ergebnis. Allerdings komme ich bei (b) für [mm] \limes_{x\to-3} [/mm] graphisch auf den Grenzwert 0.
Rechnerisch jedoch:

Da $ x < 3: [mm] \limes_{x\to-3}\bruch{x^2-9}{-(x-3)}=\limes_{x\to-3}\bruch{2x}{-1}= \bruch{-6}{-1} [/mm] = 6 $

Wo liegt der Fehler, bzw auf welchem Weg kann man die Aufgabe am besten lösen?

Vielen Dank!!

Bezug
                        
Bezug
Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Sa 02.04.2011
Autor: chesn

Evtl. läuft es doch einfach aufs Kürzen hinaus:

[mm] \limes_{x\to3}\bruch{x^2-9}{|x-3|} [/mm] (*) Da x [mm] \ge, [/mm] 3, gilt: |x-3| = (x-3), also:
(*) = [mm] \limes_{x\to3}\bruch{[s](x-3)[/s]*(x+3)}{[s](x-3)[/s]}=\limes_{x\to3}x+3 [/mm] = 3+3 = 6

bei (b) dann entsprechend:

[mm] \limes_{x\to-3}\bruch{x^2-9}{|x-3|} [/mm] (*) Da x [mm] \le, [/mm] 3, gilt: |x-3| = -(x-3), also:
(*) = [mm] \limes_{x\to3}\bruch{[s](x-3)[/s]*(x+3)}{[s]-(x-3)[/s]}=\limes_{x\to3}\bruch{x+3}{-1} [/mm] = [mm] \bruch{0}{-1} [/mm] = 0

Mit L'hospital komm ich da sonst nicht weit.. und was ist jetzt mit dem anderen Grenzwert für x=3, also -6 ?!

Vielen Dank

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Sa 02.04.2011
Autor: Al-Chwarizmi

Hallo chesn,

l'Hospital würde ich da nicht empfehlen.
Versuch es lieber mit gewöhnlichem Kürzen
und verwende dabei, dass

    $\ |x-a|\ =\ (x-a)*sgn(x-a)$

sgn ist dabei die []Vorzeichenfunktion.


LG    Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de