www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwerte
Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: brauche Denkanstoß
Status: (Frage) beantwortet Status 
Datum: 13:09 So 18.11.2012
Autor: Arkathor

Aufgabe
Berechnen Sie den Grenzwert der folgenden Ausdrücke für [mm] n\to\infty: [/mm]
[mm] a)x_n=\frac{a_0+a_1n+...a_pn^p}{b_0+b_1n+...b_pn^p} [/mm] für fest gegebene [mm] a_i,b_i\in\IR(1\lei\lep)und b_p\not=0 [/mm]
[mm] b)x_n=\sqrt{n}(\sqrt{n+1}-\sqrt{n}) [/mm]

Hallo

Ich habe folgende Aufgaben bekommen und habe mit denen Probleme. Bei a) finde ich nicht wirklich einen Ansatz, ich würde aber sagen es geht gegen +1 denn wenn p gerade ist dann geht der Zähler und Nenner gegen [mm] \infty [/mm] , und wenn p ungerade dann gehen beide gegen [mm] -\infty [/mm] und der Minus kürzt sich aus. Bei b) weiss, dass es gegen 0,5 geht (ich habe's mir plotten lassen) aber ich weiss nicht warum. [mm] \sqrt{n} [/mm] geht gegen [mm] \infty, [/mm] also muss auch [mm] \sqrt{n+1} [/mm] gegen [mm] \infty [/mm] gehen. Dann geht die klammer gegen 0 (oder 1, weil [mm] \sqrt{n+1} [/mm] schneller wächst). Und es kommt raus [mm] \infty [/mm] * 0 (oder 1). Es kann sein, dass ich dort einen denkfehler habe. Ich würde mich über tips freuen.

Mit freundlichen Grüßen

        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 So 18.11.2012
Autor: Diophant

Hallo,

> Berechnen Sie den Grenzwert der folgenden Ausdrücke für
> [mm]n\to\infty:[/mm]
> [mm]a)x_n=\frac{a_0+a_1n+...a_pn^p}{b_0+b_1n+...b_pn^p}[/mm] für
> fest gegebene [mm]a_i,b_i\in\IR(1\lei\lep)und b_p\not=0[/mm]
>
> [mm]b)x_n=\sqrt{n}(\sqrt{n+1}-\sqrt{n})[/mm]
> Hallo
>
> Ich habe folgende Aufgaben bekommen und habe mit denen
> Probleme. Bei a) finde ich nicht wirklich einen Ansatz, ich
> würde aber sagen es geht gegen +1 denn wenn p gerade ist
> dann geht der Zähler und Nenner gegen [mm]\infty[/mm] , und wenn p
> ungerade dann gehen beide gegen [mm]-\infty[/mm] und der Minus
> kürzt sich aus.

Hm, das mit dem Minuszeichen verstehe ich nicht (es ist auch nicht wichtig). Klammere bei der a) jeweils im Zähler und im Nenner [mm] n^p [/mm] aus und kürze, dann dürfte es dir klar werden.

> Bei b) weiss, dass es gegen 0,5 geht (ich

> habe's mir plotten lassen) aber ich weiss nicht warum.
> [mm]\sqrt{n}[/mm] geht gegen [mm]\infty,[/mm] also muss auch [mm]\sqrt{n+1}[/mm] gegen
> [mm]\infty[/mm] gehen. Dann geht die klammer gegen 0 (oder 1, weil
> [mm]\sqrt{n+1}[/mm] schneller wächst). Und es kommt raus [mm]\infty[/mm] * 0
> (oder 1). Es kann sein, dass ich dort einen denkfehler
> habe. Ich würde mich über tips freuen.

[mm] \infty*0 [/mm] bzw. zunächst einmal [mm] \infty-\infty [/mm] sind beides undefinierte Ausdrücke. Erweitere daher einmal den Term so, dass du im Zähler des entehenden Bruchs ein 3. Binom stehen hast. Nach einer kleinen Vereinfachung sieht man den Grenzwert von 1/2 dann auch leicht ein.


Gruß, Diophant

Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 So 18.11.2012
Autor: Arkathor

Hallo
bei a kriege ich alz grenzwert [mm] \frac{a_p}{b_p} [/mm] raus denn wenn ich [mm] n^p [/mm] rausklammere kommt raus [mm] \frac{n^p(a_0/n^p...a_p)}{n^p(b_0/n^p...b_p)} [/mm] für n=o ergibt sich der Trivialfall [mm] \frac{a_p}{b_p} [/mm] und sonst wächst der Nenner von [mm] a_in^i/n^p [/mm] (i<p) schneller als Zähler so gehen alle Werte ausser [mm] a_p [/mm] gegen Null, für b analog.
bei b) habe ich aber keinen Plan wie ich das erweitern soll. [mm] \sqrt{n}(\sqrt{n+1}-\sqrt{n}) [/mm] Wenn ich's mit [mm] \sqrt{n+1}+\sqrt{n} [/mm] erweitere bekomme [mm] ich:\frac{\sqrt{n} +n+1-n}{\sqrt{n+1}+\sqrt{n}} [/mm] , da habe ich weiter Wurzel im Zähler. Kann ich vieleicht um noch ein Tipp bitten?

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 18.11.2012
Autor: Diophant

Hallo,

zunächst: ein wenig mehr Gründlichkeit benötigt man bei solchen Aufgaben auch für den Fall, dass sie sehr leicht sind, so wie hier.

> Hallo
> bei a kriege ich alz grenzwert [mm]\frac{a_p}{b_p}[/mm] raus denn
> wenn ich [mm]n^p[/mm] rausklammere kommt raus
> [mm]\frac{n^p(a_0/n^p...a_p)}{n^p(b_0/n^p...b_p)}[/mm] für n=o


Erstens geht das gar nicht, da nicht definiert, zweitens interessiert es nicht: der Grenzwert für [mm] n\mapsto\infty [/mm] ist gesucht!


> bei b) habe ich aber keinen Plan wie ich das erweitern
> soll. [mm]\sqrt{n}(\sqrt{n+1}-\sqrt{n})[/mm] Wenn ich's mit
> [mm]\sqrt{n+1}+\sqrt{n}[/mm] erweitere bekomme [mm]ich:\frac{\sqrt{n} +n+1-n}{\sqrt{n+1}+\sqrt{n}}[/mm]
> , da habe ich weiter Wurzel im Zähler. Kann ich vieleicht
> um noch ein Tipp bitten?

Tipp: scharf hinsehen (im Zähler). Erweitert hast du genau so, wie ich es gemeint hatte.


Gruß, Diophant




Bezug
                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 So 18.11.2012
Autor: Arkathor

also wenn ich das Separat hinschreibe bekomme ich [mm] \frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}+\frac{1}{\sqrt{n+1}+\sqrt{n}} [/mm] Der zweite Ausdruck läuft gegen 0 denn  Nenner wächst und Zähler bleibt konstant. Beim erstem Ausdruck kriegt man Ein Wurzel der gegen [mm] \infty [/mm] geht geteilt durch die Summe zweier Wurzeln die jeweils gegen [mm] \infty [/mm] gehen. So würde es sich 1/2 ergeben. War das gemeint?

Bezug
                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 So 18.11.2012
Autor: Diophant

Hallo,

> also wenn ich das Separat hinschreibe bekomme ich
> [mm]\frac{\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}+\frac{1}{\sqrt{n+1}+\sqrt{n}}[/mm]

wieso das denn???

Seit wann gilt a*1=a+1???


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de