www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Grenzwerte berechnen
Grenzwerte berechnen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte berechnen: Hilfe Erklärung
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 15.11.2011
Autor: Vokabulator

Aufgabe
a)
[mm] \limes_{n\rightarrow\infty}\bruch{n +1}{n} [/mm]

b)
[mm] \limes_{n\rightarrow\infty}\bruch{2n}{n + 12} [/mm]

Hallo!

Versuche gerade, das mit den Grenzwerten zu verstehen.

Bei Aufgabe a) ist das Ergebnis 1. So wie ich das verstehe, ist das so, weil ich für jede Zahl, die ich für n einsetze (bzw, jede natürliche Zahl), das Ergebnis immer weiter Richtung 1 geht (aber praktisch nicht da an.kommt..)

Falls das stimmt, dann verstehe ich Aufgabe b) nicht. Da ist das Ergebnis nämlich 2, aber wenn ich für n 2 einsetze, kommt 2,irgendwas raus.

Könnte mir das jemand erklären? Danke schon mal für eure Hilfe!!

        
Bezug
Grenzwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Di 15.11.2011
Autor: TheBozz-mismo

Hallo!
> a)
>  [mm]\limes_{n\rightarrow\infty}\bruch{n +1}{n}[/mm]
>  
> b)
>  [mm]\limes_{n\rightarrow\infty}\bruch{2n}{n + 12}[/mm]
>  Hallo!
>  
> Versuche gerade, das mit den Grenzwerten zu verstehen.
>  
> Bei Aufgabe a) ist das Ergebnis 1. So wie ich das verstehe,
> ist das so, weil ich für jede Zahl, die ich für n
> einsetze (bzw, jede natürliche Zahl), das Ergebnis immer
> weiter Richtung 1 geht (aber praktisch nicht da
> an.kommt..)
>  
> Falls das stimmt, dann verstehe ich Aufgabe b) nicht. Da
> ist das Ergebnis nämlich 2, aber wenn ich für n 2
> einsetze, kommt 2,irgendwas raus.

Du setzt ja für n nicht 2 ein, sondern n soll unendlich groß werden.

Die beiden Grenzwerte kannst du ganz einfach berechnen, wenn du die Terme umformst.

Zu a)  [mm] \limes_{n\rightarrow\infty}\bruch{n +1}{n} [/mm]  =
[mm] \limes_{n\rightarrow\infty}\bruch{n}{n}+\bruch{1}{n} [/mm]  = [mm] \limes_{n\rightarrow\infty} [/mm] 1 +  [mm] \limes_{n\rightarrow\infty}\bruch{1}{n} [/mm]
Der erste Term geht gegen 1, der zweite Term geht gegen 0(Ich denke mal, ihr habt das schon bewiesen bzw. kann man leicht selbst nachprüfen)

Teil b) läuft ähnlich. Trenne den bruch und berechne den Limes

>  
> Könnte mir das jemand erklären? Danke schon mal für eure
> Hilfe!!


Gruß
TheBozz-mismo

Bezug
                
Bezug
Grenzwerte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:55 Di 15.11.2011
Autor: Vokabulator

Ahh... mit denen muss man richtig rechnen... ja, das ändert einiges :)

Ich üb das hier anhand eines Buchs, hab das leider nicht im Unterricht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de