www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Grenzwerte konvergenter Folgen / Obermenge
Grenzwerte konvergenter Folgen / Obermenge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte konvergenter Folgen / Obermenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Do 24.06.2004
Autor: Leibniz

Hallo!

Habe hier meinen Nußknacker angesetzt, aber die war mir zu hart, die Nuss.
Vielleicht kann mir jemand helfen die aufzubekommen in der noch verbleibenden kurzen Zeit. Vielen Dank für die abendliche Graue-Zellen-Anstrengung. :-)

Es sei A eine beliebige Teilmenge des [mm] \IR^{n}. [/mm]
[mm] \overline{A} [/mm] wird definiert als Durchschnitt aller abgeschlossener Obermengen von A.  [mm] \overline{A} [/mm]  ist abgeschlossen bezüglich des [mm] \IR^{n}. [/mm]

Zu zeigen: Unser nettes  [mm] \overline{A} [/mm]  ist die Menge aller Grenzwerte von konvergenten Folgen in A.

Puh.
Vor allem komm ich mit dem Durchschnitt nicht klar...


Gruß,
Leibnix

        
Bezug
Grenzwerte konvergenter Folgen / Obermenge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 25.06.2004
Autor: Julius

Hallo Leibnix!

Zu zeigen ist also:

[mm] $\{x \in \IR^n \, : \, \exists\, (x_n)_{n \in \IN} \in A^{\IN}\, :\, x = \lim\limits_{n \to \infty} x_n\} [/mm] = [mm] \bar{A}:= \bigcap\limits_{{B \supset A} \atop {B \ \mbox{\scriptsize abgeschlossen}}} \!\!\!\!\!\! [/mm] B$.


[mm] $"`\Rightarrow"'$: [/mm]

Es sei $x [mm] \in \IR^n$ [/mm] der Grenzwert einer Folge [mm] $(x_n)_{n \in \IN}$ [/mm] mit [mm] $x_n \in [/mm] A$ ($n [mm] \in \IN$). [/mm]

Wäre $x [mm] \notin \bar{A}$, [/mm] so wäre [mm] $\IR^n \setminus \bar{A}$ [/mm] eine offene Umgebung von $x$. Wegen [mm] $\lim\limits_{n \to \infty}x_n [/mm] = x$ müssten dann aber fast alle Folgenglieder in dieser offenen Umgebung liegen, was aber wegen [mm] $x_n \in [/mm] A$ für alle $n [mm] \in \IN$ [/mm] nicht der Fall ist. Daher muss $x [mm] \in \bar{A}$ [/mm] gelten.


[mm] $"`\Leftarrow"'$: [/mm]

Es sei $x [mm] \in \bar{A}$. [/mm] Für $x [mm] \in [/mm] A$ ist nichts zu zeigen (da nimmt man einfach die konstante Folge [mm] $x_n=a$). [/mm] Es sei also $x [mm] \notin [/mm] a$. Wäre $x$ nicht der Grenzwert einer Folge mit Folgengliedern aus $A$, dann gäbe es eine offene Umgebung $O$ von $x$ mit $O [mm] \cap [/mm] A = [mm] \emptyset$, [/mm] also mit $O [mm] \subset \IR^n \setminus [/mm] A$. Dann wäre aber:

$x [mm] \in \bigcup\limits_{{O \subset \IR^n \setminus A} \atop {O \ \mbox{\scriptsize offen}}} [/mm] O = [mm] \!\!\!\!\! \bigcup\limits_{{B \supset A} \atop { B \ \mbox{\scriptsize abgeschlossen}}} \!\!\!\!\! \IR^n \setminus [/mm] B = [mm] \IR^n \setminus \!\!\!\!\! \bigcap\limits_{{B \supset A} \atop {B \ \mbox{\scriptsize abgeschlossen}}} \!\!\!\!\!\! [/mm] B = [mm] \IR^n \setminus \bar{A}$, [/mm]

Widerspruch! Also ist $x$ der Grenzwert einer Folge, deren Folgenglieder in $A$ liegen.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de