www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwertkriterium
Grenzwertkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertkriterium: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:52 So 18.01.2009
Autor: Englein89

Hallo!

Wenn ich beim Grenzwertkriterium etwas herauskriege, was <0 ist, kann ich dann eigentlich trotzdem auf etwas schließen oder brauche ich ein anderes Kriterium/eine andere Vergleichsreihe?

        
Bezug
Grenzwertkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 So 18.01.2009
Autor: pelzig

Du musst schon etwas konkreter werden... Um welches Kriterium geht es?

Gruß, Robert

Bezug
        
Bezug
Grenzwertkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 So 18.01.2009
Autor: Englein89

Das Genzwertkriterium ist bei mir:

Ist [mm] a_n [/mm] durch [mm] b_n [/mm] zwischen 0 und unendlich, so verhält sich [mm] a_n [/mm] wie [mm] b_n. [/mm]

Bezug
        
Bezug
Grenzwertkriterium: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:48 Mo 19.01.2009
Autor: Englein89

Gibt es dazu keine Regel?

Bezug
                
Bezug
Grenzwertkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Mo 19.01.2009
Autor: fred97

Schreib das Grenzwertkriterium mal ordentlich und vollständig auf. Dann stelle eine konkrete Frage.

Das:

"Ist $ [mm] a_n [/mm] $ durch $ [mm] b_n [/mm] $ zwischen 0 und unendlich, so verhält sich $ [mm] a_n [/mm] $ wie $ [mm] b_n. [/mm] $"

ist völliger unfug.


FRED

Bezug
                        
Bezug
Grenzwertkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Mo 19.01.2009
Autor: Englein89

Grenzwertkriterium:

Sind [mm] a_n [/mm] und [mm] b_n [/mm] zwei Reihen mit positiven Gliedern und
0 < [mm] \limes_{n\rightarrow\infty} \bruch{a_n}{b_n} [/mm] < [mm] \infty, [/mm]
so haben die beiden Reihen dasselbe Konvergenzverhalten.

Bezug
                                
Bezug
Grenzwertkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mo 19.01.2009
Autor: fred97


> Grenzwertkriterium:
>  
> Sind [mm]a_n[/mm] und [mm]b_n[/mm] zwei Reihen mit positiven Gliedern und
>  0 < [mm]\limes_{n\rightarrow\infty} \bruch{a_n}{b_n}[/mm] <
> [mm]\infty,[/mm]
>  so haben die beiden Reihen dasselbe Konvergenzverhalten.


Na also !

Du hast oben geschrieben:


"Wenn ich beim Grenzwertkriterium etwas herauskriege, was <0 ist  ............."

Wie soll das gehen bei

0 < [mm]\limes_{n\rightarrow\infty} \bruch{a_n}{b_n}[/mm] <

> [mm]\infty,[/mm]


??????


FRED



Bezug
                                        
Bezug
Grenzwertkriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Mo 19.01.2009
Autor: Englein89

Kann ich hierbei nichts Negatives herausbekommen?

Okay, wahrscheinlich liegt es daran, dass es 2 positive Reihen sind.. aber ich habe noch nie zwischen positiven und negativen Reihen unterschieden. Was wäre eine negative Reihe? Darf ich dann hier das Kriterium nicht anwenden?

Bezug
                                                
Bezug
Grenzwertkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Mo 19.01.2009
Autor: fred97

[mm] \summe_{n=1}^{\infty}a_n [/mm] ist konvergent [mm] \gdw \summe_{n=1}^{\infty}(-a_n) [/mm] ist konvergent.


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de