Gruppe SL(2,Z) < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:43 Mo 07.11.2016 | Autor: | Schobbi |
Aufgabe | Es sei [mm] SL_2(\IZ)=\{A=\pmat{ a & b \\ c & d }\in M_2(\IC) | a,b,c,d \in \IZ, det(A)=1\}
[/mm]
Zeigen Sie, dass [mm] SL_2\IZ [/mm] eine Gruppe ist. |
Guten Morgen, wollte nur mal auf Nummer sicher gehen, ob das ganze so passt. Um zzg. dass [mm] SL_2(\IZ) [/mm] eine Gruppe ist muss ich zeigen, dass gilt:
(0) Abgeschlossenheit: Seine A, B [mm] \in SL_2(\IZ), [/mm] dannn gilt det(A)=1=det(B)
det(AB)=det(A)*det(B)=1*1=1 also folgt [mm] AB\in SL_2(\IZ) [/mm]
(1) Assoziativität: Seien A,B,C [mm] \in SL_2(\IZ) [/mm] dann gilt
det((A*B)*C)=det(A*B)*det(C)=det(A)*det(B)*det(C)=det(A)*(det(B)*det(C))=det(A*(B*C))
(2) neutrales Element: Sei [mm] A\in SL_2(\IZ) [/mm] und E= [mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] ebenfalls [mm] \in SL_2(\IZ) [/mm] da det(E)=1, dann gilt det(A*E)=det(E*A)=1=det(A)
(3)inverses Element: Sei [mm] A^{-1}\in SL_2(\IZ) [/mm] dann gilt [mm] det(A^{-1})=1. [/mm] für alle A [mm] \in SL_2(\IZ) [/mm] gilt dann [mm] det(A)*det(A^{-1})=1+1=1=det(E)
[/mm]
Oder gibt es da eine bessere Möglichkeit?
DANKE und Viele Grüße
|
|
|
|
Hallo Schobbi,
> Es sei [mm]SL_2(\IZ)=\{A=\pmat{ a & b \\ c & d }\in M_2(\IC) | a,b,c,d \in \IZ, det(A)=1\}[/mm]
>
> Zeigen Sie, dass [mm]SL_2\IZ[/mm] eine Gruppe ist.
> Guten Morgen, wollte nur mal auf Nummer sicher gehen, ob
> das ganze so passt. Um zzg. dass [mm]SL_2(\IZ)[/mm] eine Gruppe ist
> muss ich zeigen, dass gilt:
>
> (0) Abgeschlossenheit: Seine A, B [mm]\in SL_2(\IZ),[/mm] dannn gilt
> det(A)=1=det(B)
> det(AB)=det(A)*det(B)=1*1=1 also folgt [mm]AB\in SL_2(\IZ)[/mm]
Gut!
>
> (1) Assoziativität: Seien A,B,C [mm]\in SL_2(\IZ)[/mm] dann gilt
> det((A*B)*C)=det(A*B)*det(C)=det(A)*det(B)*det(C)=det(A)*(det(B)*det(C))=det(A*(B*C))
Etwas lax ...
Wieso zeigt das, dass [mm](AB)C=A(BC)[/mm] ist? Du zeigst doch "nur", dass sowohl [mm](AB)C[/mm], als auch [mm]A(BC)[/mm] in [mm]Sl_2(\IZ)[/mm] sind ...
Aber Matrizenmult. ist ja zum Glück schon in [mm] $M_2(\IC)$ [/mm] assoziativ, das vererbt sich also ...
>
> (2) neutrales Element: Sei [mm]A\in SL_2(\IZ)[/mm] und E= [mm]\pmat{ 1 & 0 \\ 0 & 1 }[/mm]
> ebenfalls [mm]\in SL_2(\IZ)[/mm] da det(E)=1,
> dann gilt
> det(A*E)=det(E*A)=1=det(A)
Das ist nicht zu zeigen, sondern [mm]AE=EA=A[/mm] - naja, das musst du ja nicht wirklich zeigen (wieso?)
>
> (3)inverses Element: Sei [mm]A^{-1}\in SL_2(\IZ)[/mm] dann gilt
> [mm]det(A^{-1})=1.[/mm] für alle A [mm]\in SL_2(\IZ)[/mm] gilt dann
> [mm]det(A)*det(A^{-1})=1+1=1=det(E)[/mm]
Das + ist ein Verschreiber ...
Wieso ist [mm]A^{-1}\in Sl_2(\IZ)[/mm]?
Das musst du zeigen und kannst das nicht voraussetzen.
Es geht wohl darum, zu vorgelegtem [mm]A\in Sl_2(\IZ)[/mm] das [mm]A^{-1}[/mm] konkret anzugeben und zu begründen, dass das auch in der Menge liegt.
Kleiner Tipp: Für [mm]2\times 2[/mm]-Matrizen gibt's ne nette "Formel" zur Berechnung der Inversen - damit kannst du dann auch die Zugehörigkeit von [mm]A^{-1}[/mm] zu [mm]Sl_2(\IZ)[/mm] begründen ...
>
> Oder gibt es da eine bessere Möglichkeit?
Du hast ein bisschen was durcheinander gehauen. Du kannst natürlich Determinantenregeln für deine Begründung(en) benutzen, musst aber darauf achten, was du eigentlich zeigen sollst
>
> DANKE und Viele Grüße
Gerne und Grüße zurück
schachuzipus
|
|
|
|