www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppe der Ordnung 45
Gruppe der Ordnung 45 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe der Ordnung 45: Korrektur und Tipp
Status: (Frage) beantwortet Status 
Datum: 12:45 Sa 20.06.2009
Autor: Liane

Aufgabe
Es sei (G,*) eine Gruppe der Ordnung 45. Man zeige:

(i) G besitzt einen Normalteiler T der Ordnung 9 und einen Normalteiler S der Ordnung 5.

(ii) G = {t*s| t [mm] \in [/mm] T, s [mm] \in [/mm] S}

(iii) G [mm] \cong [/mm] T [mm] \oplus [/mm] S

Hallo zusammen,

diese Aufgabe habe ich zum Lösen bekommen. Leider komme ich an der einen oder anderen Stelle nicht weiter bzw. ich weiß nicht, ob die Argumentation so reicht. Vielleicht kann mir ja jemand von euch helfen.

Also nun zu den einzelnen Teilen:

(i) Es gilt [mm] |G|=45=3^{2} [/mm] * 5
Mit den Sylowsätzen erhält man:
t|5 ; 3|t-1  und
s|3 ; 5|s-1
[mm] \Rightarrow [/mm] t=s=1
Es gibt also nur eine 3-Sylowgruppe T und eine 5-Sylowgruppe S. Damit sind S und T auch Normalteiler von G, d.h.
|T|=9 ; |S|=5
und T [mm] \cap [/mm] S={1}

(ii) Seien st, s't' [mm] \in [/mm] ST. Dann gilt:
st=s't'
[mm] \gdw tt^{-1}'=s^{-1}s' \in [/mm] S [mm] \cap [/mm] T={1}
[mm] \gdw [/mm] s = s' ; t = t'
Also |ST|=|S|*|T|=45, also G={s*t | s [mm] \in [/mm] S , t [mm] \in [/mm] T}

(iii) Ist p Primzahl, so ist jede Gruppe der Ordnung p oder [mm] p^{2} [/mm] abelsch, also ist auch G abelsch.
Betrachte nun den Kommutator von zwei Elementen [mm] s\inS [/mm] und [mm] t\inT: [/mm]
[mm] sts^{-1}t^{-1} [/mm] = [mm] (sts^{-1})t^{-1} [/mm] = [mm] s(tst^{-1}) \in [/mm] S [mm] \cap [/mm] T={1}
[mm] \Rightarrow [/mm] st=ts
Und somit gilt G [mm] \cong [/mm] T [mm] \oplus [/mm] S

Meine Frage:
Kann ich bei den Teilschritten so vorgehen oder fehlt bei der Argumentation noch wichtiges? Bei (iii) bin ich mir gar nicht sicher, weil ja die Isomorphie bzgl [mm] \oplus [/mm] gefragt ist und ich ja mit * argumentiere...


Liebe Grüße
Liane


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppe der Ordnung 45: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mi 24.06.2009
Autor: felixf

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo!

> Es sei (G,*) eine Gruppe der Ordnung 45. Man zeige:
>
> (i) G besitzt einen Normalteiler T der Ordnung 9 und einen
> Normalteiler S der Ordnung 5.
>  
> (ii) G = {t*s| t [mm]\in[/mm] T, s [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

S}

>  
> (iii) G [mm]\cong[/mm] T [mm]\oplus[/mm] S
>  Hallo zusammen,
>
> diese Aufgabe habe ich zum Lösen bekommen. Leider komme ich
> an der einen oder anderen Stelle nicht weiter bzw. ich weiß
> nicht, ob die Argumentation so reicht. Vielleicht kann mir
> ja jemand von euch helfen.
>
> Also nun zu den einzelnen Teilen:
>
> (i) Es gilt [mm]|G|=45=3^{2}[/mm] * 5
>  Mit den Sylowsätzen erhält man:
> t|5 ; 3|t-1  und
> s|3 ; 5|s-1
>  [mm]\Rightarrow[/mm] t=s=1
>  Es gibt also nur eine 3-Sylowgruppe T und eine
> 5-Sylowgruppe S. Damit sind S und T auch Normalteiler von
> G, d.h.
>  |T|=9 ; |S|=5
> und T [mm]\cap[/mm] S={1}

Genau.

> (ii) Seien st, s't' [mm]\in[/mm] ST. Dann gilt:
>   st=s't'
>  [mm]\gdw tt^{-1}'=s^{-1}s' \in[/mm] S [mm]\cap[/mm] T={1}
>  [mm]\gdw[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

s = s' ; t = t'

>  Also |ST|=|S|*|T|=45, also G={s*t | s [mm]\in[/mm] S , t [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

T}

Genau.

> (iii) Ist p Primzahl, so ist jede Gruppe der Ordnung p oder
> [mm]p^{2}[/mm] abelsch, also ist auch G abelsch.

Ja. (Wofuer brauchst du das denn?)

>  Betrachte nun den Kommutator von zwei Elementen [mm]s\inS[/mm] und
> [mm]t\inT:[/mm]
> [mm]sts^{-1}t^{-1}[/mm] = [mm](sts^{-1})t^{-1}[/mm] = [mm]s(tst^{-1}) \in[/mm] S [mm]\cap[/mm]
> T={1}
>  [mm]\Rightarrow[/mm] st=ts
>  Und somit gilt G [mm]\cong[/mm] T [mm]\oplus[/mm] S

Ja, das gilt. Ganz allgemein gilt uebrigens, wenn $G$, $T$ Normalteiler sind, dass dann $G T =T G$ ist.

> Meine Frage:
>  Kann ich bei den Teilschritten so vorgehen oder fehlt bei
> der Argumentation noch wichtiges? Bei (iii) bin ich mir gar
> nicht sicher, weil ja die Isomorphie bzgl [mm]\oplus[/mm] gefragt
> ist und ich ja mit * argumentiere...

Nun, es gilt ja genau dann $G [mm] \cong [/mm] T [mm] \oplus [/mm] S$, wenn $T S = G$ ist, $T [mm] \cap [/mm] S = [mm] \{ 1 \}$ [/mm] und $T S = S T$ ist. Falls ihr sowas schonmal in der Vorlesung behandelt hattet, folgt das damit.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de