www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppe der Ordnung pq
Gruppe der Ordnung pq < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe der Ordnung pq: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:55 Mi 12.11.2014
Autor: Rocky14

Aufgabe
Sei G eine Gruppe der Ordnung pq mit p,q prim und p<q.
Zeigen Sie:
a) G besitzt eine normale q-Sylowuntergruppe
b) Gilt "p teilt nicht q-1", so ist G zyklisch
c) G ist auflösbar

Hallo Leute,
schonmal vielen Dank im Voraus für eure Korrektur!

zu a)
Sei p<q. Nach dem 3.Sylowsatz gilt für die Anzahl der q-Sylowuntergruppen in G:
* Sq = 1 mod q
* Sq teilt p
=> Sq [mm] \in [/mm] {1,p}
=> Sq [mm] \not= [/mm] p, da sonst p = 1 mod q, aber q kann kein Teiler von p-1 sein, wegen p<q
=> Sq = 1, da p<q gelten muss.
=>  Es gibt also nur eine einzige q - Sylowuntergruppe.
=> G eine normale q-Sylowuntergruppe.

zu b)
Sei |G| = pq. Für die Anzahl der p-Sylowgruppen gilt
* Sp teilt q und
* Sp = 1 mod p
=> Sp [mm] \n [/mm] {1,q}
=> Sp [mm] \not= [/mm] q, denn dann folgt q = 1 mod p, also p teilt q-1.
=> Wiederspruch zur Voraussetzung "p teilt nicht q-1".
=> Sp = 1, also ex. eine normale p-Sylowuntergruppe von G
Die Anzahl der q-Sylowuntergruppen kennen wir schon aus a):
Es existiert eine normale q-Sylowuntergruppe.
=> Sp und Sq sind die einzigen normalen p- bzw. q-Sylowuntergruppen
Beide Sylows sind zyklisch wegen Primzahlordnung
=> [mm] \IZ/p\IZ [/mm] x [mm] \IZ/q\IZ [/mm] ist isomorph zu einer Untergruppe von G
=> Aus Kardinalitätsgründen ist |U|=|G|
=> G [mm] \cong \IZ/pq\IZ [/mm]
=> G zyklisch

zu c)
aus a) wissen wir: G besitzt eine normale q-Sylowuntergruppe.
=> 2. Satz von Sylow: q-Sylowuntergruppen sind immer konjugiert zueinander
=> es gibt nur eine q-Sylowuntergruppe, also gilt qNq^-1 = N [mm] \forall [/mm] q [mm] \in [/mm] G
=> N Normalteiler
=> |N|=q und |G/N| = p
=> N und G/N sind zyklisch
=> N und G/N sind abelsch
=> Satz: G auflösbar <=> N und G/N auflösbar
=> N und G/N sind auflösbar, da abelsche Gruppen immer auflösbar sind
=> G auflösbar

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppe der Ordnung pq: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Mi 12.11.2014
Autor: Teufel

Hi!

Sieht für mich gut so aus, wobei du bei der b) noch die letzten 4 Zeilen etwas mehr begründen könntest.

Bezug
                
Bezug
Gruppe der Ordnung pq: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Do 13.11.2014
Autor: Rocky14

Mach ich. Vielen Dank fürs drüberschauen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de