www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppe endlich erzeugt
Gruppe endlich erzeugt < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe endlich erzeugt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Di 08.11.2011
Autor: pyw

Aufgabe
Die additive Gruppe [mm] \IQ/\IZ [/mm] ist nicht endlich erzeugt.

Angenommen [mm] q_1\IZ,\ldots,q_n\IZ [/mm] erzeugen [mm] \IQ/\IZ [/mm] endlich, d.h. für [mm] q\IZ\in\IQ/\IZ [/mm] gilt

        [mm] q\IZ=\sum_{i=1}^nm_i*q_i\IZ, m_i\in\IZ. [/mm]

Das kann nicht sein, weil auf der rechten Seite nur solche Elemente aus [mm] \IQ/\IZ [/mm] stehen, die beschränkten Nenner (= Hauptnenner der [mm] q_i) [/mm] als Repräsentanten haben.

Also folgt, [mm] \IQ/\IZ [/mm] ist nicht endlich erzeugt.

Stimmt das?

Gruß

        
Bezug
Gruppe endlich erzeugt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Di 08.11.2011
Autor: kamaleonti

Moin,
> Die additive Gruppe [mm]\IQ/\IZ[/mm] ist nicht endlich erzeugt.
>  Angenommen [mm]q_1\IZ,\ldots,q_n\IZ[/mm] erzeugen [mm]\IQ/\IZ[/mm] endlich,
> d.h. für [mm]q\IZ\in\IQ/\IZ[/mm] gilt
>  
> [mm]q\IZ=\sum_{i=1}^nm_i*q_i\IZ, m_i\in\IZ.[/mm]
>  
> Das kann nicht sein, weil auf der rechten Seite nur solche
> Elemente aus [mm]\IQ/\IZ[/mm] stehen, die beschränkten Nenner (=
> Hauptnenner der [mm]q_i)[/mm] als Repräsentanten haben.
>  
> Also folgt, [mm]\IQ/\IZ[/mm] ist nicht endlich erzeugt.
>  
> Stimmt das?

Das sieht gut aus [ok].

LG


Bezug
                
Bezug
Gruppe endlich erzeugt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Di 08.11.2011
Autor: pyw

Danke!

Bezug
        
Bezug
Gruppe endlich erzeugt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Di 08.11.2011
Autor: andreas

hallo.

noch ein hinweis: ich würde die nebenklassen repräsentanten lieber als [mm] $q_i [/mm] + [mm] \mathbb{Z}$ [/mm] schreiben, da es sich um additive gruppen handelt.
außerdem würde ich, um auf nummer sicher zu gehen, ein element $q + [mm] \mathbb{Z}$ [/mm] konkret angeben, das nicht in der von den [mm] $q_i [/mm] + [mm] \mathbb{Z} [/mm] = [mm] \frac{a_i}{b_i} [/mm] + [mm] \mathbb{Z}$ [/mm] erzeugten untergruppe liegt, aber das ist mit deiner idee nicht weiter schwer.

grüße andreas


Bezug
                
Bezug
Gruppe endlich erzeugt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Di 08.11.2011
Autor: pyw

Hallo andreas,

danke für den Hinweis.

> noch ein hinweis: ich würde die nebenklassen
> repräsentanten lieber als [mm]q_i + \mathbb{Z}[/mm] schreiben, da
> es sich um additive gruppen handelt.
>  außerdem würde ich, um auf nummer sicher zu gehen, ein
> element [mm]q + \mathbb{Z}[/mm] konkret angeben, das nicht in der
> von den [mm]q_i + \mathbb{Z} = \frac{a_i}{b_i} + \mathbb{Z}[/mm]
> erzeugten untergruppe liegt, aber das ist mit deiner idee
> nicht weiter schwer.

Ja, das wäre dann zum Beispiel das Element [mm] \frac{1}{kgV(b_1,\ldots,b_n)+1}+\IZ. [/mm]

Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de