www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppe zyklisch
Gruppe zyklisch < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe zyklisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Do 09.10.2008
Autor: Irmchen

Hallo alle zusammen!

Ich bin gerade bei der Theorie zum Thema "Zyklische Gruppen" und habe eine Frage zu einer Aussage.
Im Buch steht ohne Beweis, dass eine Gruppe G genau dann zyklisch ist, wenn es einen Isomorphismus [mm] \mathbb Z / H \tilde {\rightarrow} G [/mm] gibt, wobei H eine Untergruppe und damit ein Normalteiler von [mm] \mathbb Z [/mm] ist.

Nun zu meinen Unklarheiten:
Sehr ich das richtig, dass die Untergruppe ein Normalteiler ist, weil [mm] \mathbb Z [/mm] kommutativ ist?
Und warum ist die Gruppe dann zyklisch? Ich versteh nicht wirklich die Aussagen dieser Bemerkung... :-(.

Vielen Dank für die Hilfe!

Viele Grüße
Irmchen

        
Bezug
Gruppe zyklisch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Do 09.10.2008
Autor: pelzig


> Hallo alle zusammen!
>  
> Ich bin gerade bei der Theorie zum Thema "Zyklische
> Gruppen" und habe eine Frage zu einer Aussage.
>  Im Buch steht ohne Beweis, dass eine Gruppe G genau dann
> zyklisch ist, wenn es einen Isomorphismus [mm]\mathbb Z / H \tilde {\rightarrow} G[/mm]
> gibt, wobei H eine Untergruppe und damit ein Normalteiler
> von [mm]\mathbb Z[/mm] ist.
>  
> Nun zu meinen Unklarheiten:
>  Sehr ich das richtig, dass die Untergruppe ein
> Normalteiler ist, weil [mm]\mathbb Z[/mm] kommutativ ist?

Genau. In abelschen Gruppen ist jede Untergruppe ein Normalteiler.

>  Und warum ist die Gruppe dann zyklisch? Ich versteh nicht
> wirklich die Aussagen dieser Bemerkung... :-(.

Die Untergruppen von $Z$  sind ja genau die [mm] $n\IZ$ [/mm] für [mm] $n\in\IN\cup\{0\}$. [/mm] Und [mm] $\IZ/n\IZ$ [/mm] ist klar zyklisch, denn [mm] $\bar [/mm] 1$ erzeugt die gesamte Gruppe.
Hat man nun einen Isomorphismus [mm] $\varphi:\IZ/n\IZ\to [/mm] G$, so ist auch $G$ zyklisch, mit dem Erzeuger [mm] $\varphi(1)$, [/mm] denn jedes [mm] $g\inG$ [/mm] lässt sich schreiben als [mm] $\varphi(\varphi^{-1}(g))=\varphi(\pm 1^m)=\pm\varphi(1)^m$. [/mm]

Bedenke: Isomorphe Gruppen sind gleich in dem Sinne, dass die Elemente nur "umbenannt wurden". Alle Eigenschaften von Gruppen, die sich mit den Gruppenaxiomen formulieren lassen (wie zum Beispiel "zyklisch") übertragen sich damit durch Isomorphie, und isomorphe Gruppen sind hinsichtlich dieser Eigenschaften nicht unterscheidbar.

Gruß, Robert.

Bezug
                
Bezug
Gruppe zyklisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:58 Fr 10.10.2008
Autor: Irmchen

Vielen Dank!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de