www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppen
Gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 Sa 17.10.2009
Autor: Picassine

Aufgabe
Sei [mm] (G,\*) [/mm] eine Gruppe, S [mm] \subset [/mm] G eine Teilmenge und H, Hi [mm] \subset [/mm] G Untergruppen. Zeigen Sie:
a) [mm] \bigcap_{i \in I} [/mm] Hi ist eine Gruppe
b) die von S erzeugte Untergruppe <S> = [mm] \bigcup [/mm] H ist gegeben durch [mm] M(s)=\{e\} \cup \{g \in G| g= \produkt si mit si \in S oder si^-1 \in S}\ [/mm]

Bei a) ist mir klar, dass der Schnitt von Untergruppen, wieder eine Untergruppe und somit auch eine Gruppe ist. Aber wie kann ich das zeigen?
bei b) weiß ich leider gar nicht wie ich vorgehen soll.
kann mir jemand helfen?
Danke schonmal!

        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 Sa 17.10.2009
Autor: felixf

Hallo!

> Sei [mm](G,\*)[/mm] eine Gruppe, S [mm]\subset[/mm] G eine Teilmenge und H,
> Hi [mm]\subset[/mm] G Untergruppen. Zeigen Sie:
>  a) [mm]\bigcap_{i \in I}[/mm] Hi ist eine Gruppe
>  b) die von S erzeugte Untergruppe <S> = [mm]\bigcup[/mm] H ist

> gegeben durch [mm]M(s)=\{e\} \cup \{g \in G| g= \produkt si mit si \in S oder si^-1 \in S}\[/mm]
>  
> Bei a) ist mir klar, dass der Schnitt von Untergruppen,
> wieder eine Untergruppe und somit auch eine Gruppe ist.
> Aber wie kann ich das zeigen?

Na, indem du die (Unter-)Gruppenaxiome nachrechnest. Was musst du zeigen?

>  bei b) weiß ich leider gar nicht wie ich vorgehen soll.

Nun: zeige erstmal, dass $M(s)$ die Menge auf der rechten Seite enthalten muss. Dann zeige, dass die Menge auf der rechten Seite eine Untergruppe von $G$ ist, die $S$ umfasst: daraus folgt per Definition, dass $M(s)$ als kleinste $S$ umfassende Untergruppe in der rechten Seite enthalten ist.

LG Felix


Bezug
        
Bezug
Gruppen: Weitere Frage
Status: (Frage) beantwortet Status 
Datum: 12:27 So 18.10.2009
Autor: SteffanM

Aufgabe
[mm] :=\bigcap_{H \subseteq G S \subset H} [/mm] H

So steht hier bei uns die Aufgabe, aber was man genau tun soll weiß ich auch nicht.

M(S) ist doch mehr oder minder alle g die sich durch Multiplikation von Elementen aus S darstellen lassen. Wenn ich das richtig verstehe sind doch alle Elemente von S in dem Schnitt drinne. Was soll denn da gezeigt werden? Ist dieser Schnitt nicht = S ?

In der Aufgabe steht doch schon das <S> eine Untergruppe ist. Zeigen?

Verstehe nicht genau was gezeigt werden soll.


Bin schon etwas weiter:
Wie zeige ich, dass
[mm] \bigcap_{H \subseteq G S \subset H} [/mm] H [mm] \subset [/mm] M(S)




Ich habe diese Frage in keinem anderen Internetforum gestellt.



Bezug
                
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 So 18.10.2009
Autor: felixf

Hallo!

> [mm]:=\bigcap_{H \subseteq G S \subset H}[/mm] H

Hast du dir die Formel mal angeschaut nachdem du sie geschrieben hast? Du meinst ganz offensichtlich etwas voellig anderes, naemlich [mm]:=\bigcap_{H \subseteq G, S \subset H} H[/mm]

>  So steht hier bei uns die Aufgabe, aber was man genau tun
> soll weiß ich auch nicht.
>  
> M(S) ist doch mehr oder minder alle g die sich durch
> Multiplikation von Elementen aus S darstellen lassen.

Ja. Das kommt da oben allerdings nicht (direkt) vor.

> Wenn
> ich das richtig verstehe sind doch alle Elemente von S in
> dem Schnitt drinne. Was soll denn da gezeigt werden? Ist
> dieser Schnitt nicht = S ?

Nein, er ist gleic $M(S)$, weil du Untergruppen schneidest und nict irgenwelche Teilmengen.

> In der Aufgabe steht doch schon das <S> eine Untergruppe
> ist. Zeigen?
>  
> Verstehe nicht genau was gezeigt werden soll.

Du sollst zeigen: [mm] $\langle [/mm] S [mm] \rangle$ [/mm] ist gleich dem Schnitt aller Untergruppen, die $S$ enthalten.

(Wie genau [mm] $\langle [/mm] S [mm] \rangle$ [/mm] nun bei euch definiert ist weiss ich leider nicht, das steht in dem was du geschrieben hast nicht, ausser das es eine Vereinigung von Mengen(Untergruppen?) ist.)

> Bin schon etwas weiter:
>  Wie zeige ich, dass
> [mm]\bigcap_{H \subseteq G S \subset H}[/mm] H [mm]\subset[/mm] M(S)

Nun: indem du zeigst, dass $M(S)$ in dem Schnitt der linken Seite auftaucht, also dass $H = M(S)$ ebenfalls $S [mm] \subset [/mm] H$ erfuellt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de