www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Gruppen
Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Tipp
Status: (Frage) beantwortet Status 
Datum: 02:40 So 29.05.2011
Autor: Lesbia

f [mm] \circ [/mm] g = f

Dies trifft nur auf die Identitätsabbildung auf [mm] \IR [/mm] zu.
Nur wie schreibe ich das mathematik korrekt auf:

[mm] id_{R}: \IR \mapsto \IR [/mm]  x [mm] \mapsto [/mm] x

Die 2. Frage ist ob die Gruppe (M, [mm] \circ [/mm] ) kommutativ ist.
Das gilt ja, wenn f [mm] \circ [/mm] g = g [mm] \circ [/mm] f
Bloß, wie beweise ich das genau?

Vielen Dank schonmal



        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 So 29.05.2011
Autor: marc1601


> Sei M die Menge aller bijektiven Abbildungen von [mm]\IR[/mm] nach
> [mm]\IR.[/mm] Die Verkettung zweier bijektiver Abbildungen ist
> wieder bijektiv.
>  
> [mm]\circ[/mm] :  M [mm]\times[/mm] M [mm]\mapsto[/mm] M, (f [mm]\circ[/mm] g)(x) = f(g(x))
>  Gesucht ist das neutrale Element. Das neutrale Element der
> Gruppe muss eine Abbildung g sein, welche diese Eigenschaft
> erfüllt.
>  
> f [mm]\circ[/mm] g = f
>  
> Dies trifft nur auf die Identitätsabbildung auf [mm]\IR[/mm] zu.
>  Nur wie schreibe ich das mathematik korrekt auf:
>  
> [mm]id_{R}: \IR \mapsto \IR[/mm]  x [mm]\mapsto[/mm] x


Du willst ja zeigen, dass $f [mm] \circ \mathrm{id}_\IR [/mm] = f = [mm] \mathrm{id}_\IR \circ [/mm] f$ für alle $f [mm] \in [/mm] M$ gilt. Du hast da eine Gleichung von Funktionen stehen. Wann sind zwei Funktionen gleich? - Wenn sie auf allen Punkten im Definitionsbereich übereinstimmen. Also schau Dir am besten mal an, was $(f [mm] \circ \mathrm{id}_\IR)(x)$ [/mm] und [mm] $(\mathrm{id}_\IR \circ [/mm] f)(x)$ jeweils ist.

>  
> Die 2. Frage ist ob die Gruppe (M, [mm]\circ[/mm] ) kommutativ ist.
>  Das gilt ja, wenn f [mm]\circ[/mm] g = g [mm]\circ[/mm] f
> Bloß, wie beweise ich das genau?

Du wirst feststellen, dass Du es nicht beweisen kannst. Man kann sich zwei Elemente $f,g$ in $M$ definieren, sodass $f [mm] \circ [/mm] g [mm] \neq [/mm] g [mm] \circ [/mm] f$ gilt. Falls Dir das bei den reellen Zahlen als Grundmenge zu unübersichtlich ist, kannst Du das Ganze auch erst mal auf einer Menge mit drei Elementen betrachten: Also als Grundmenge nimmst Du [mm] $X=\{1,2,3\}$ [/mm] und dein [mm] $M_X$ [/mm] sind jetzt alle bijektiven Abbildungen von $X$ nach $X$. Wenn Du in dieser Menge zwei solche $f$ und $g$ gefunden hast, sodass $f [mm] \circ [/mm] g [mm] \neq [/mm] g [mm] \circ [/mm] f$ gilt, kannst Du das ganz schnell auf den Fall [mm] $X=\IR$, [/mm] also wie in der Aufgabe, verallgemeinern.


> Vielen Dank schonmal
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de