www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Gruppen
Gruppen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:20 Mo 07.11.2011
Autor: tingel-tangel-rob

Aufgabe
Sei G eine Gruppe. Beweisen Sie für x,y [mm] \in [/mm] G:
a) Es gilt [mm] (xy)^{-1}=y^{-1}x^{-1} [/mm]
b) Genau dann ist [mm] (xy)^{-1}=x^{-1}y^{-1}, [/mm] wenn xy=yx gilt
c) Wenn [mm] x^{2}=e [/mm] für alle x [mm] \in [/mm] G gilt, ist G kommutativ

Hallo,

ich habe diese Frage in keinem anderen Forum gestellt.

Ich hab diese Aufgabe bekommen und bin total am verzweifeln!
Bei Aufgabe a wollte ich zuerst mit dem Potenzgesetz argumentieren, aber irgendwie erscheint mir das zu einfach.


        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mo 07.11.2011
Autor: fred97


> Sei G eine Gruppe. Beweisen Sie für x,y [mm]\in[/mm] G:
>  a) Es gilt [mm](xy)^{-1}=y^{-1}x^{-1}[/mm]
>  b) Genau dann ist [mm](xy)^{-1}=x^{-1}y^{-1},[/mm] wenn xy=yx gilt
>  c) Wenn [mm]x^{2}=e[/mm] für alle x [mm]\in[/mm] G gilt, ist G kommutativ
>  Hallo,
>  
> ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Ich hab diese Aufgabe bekommen und bin total am
> verzweifeln!
>  Bei Aufgabe a wollte ich zuerst mit dem Potenzgesetz
> argumentieren, aber irgendwie erscheint mir das zu einfach.
>  

  Setze [mm] z:=y^{-1}x^{-1}. [/mm] Wenn Du zeigen kannst, dass

          (+)        z(xy)=e=(xy)z

ist, so folgt: [mm] (xy)^{-1}=z. [/mm] Zeige also(+)

FRED

Bezug
                
Bezug
Gruppen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:30 Mo 07.11.2011
Autor: tingel-tangel-rob

Was meinst du jetzt mit dem (+) ??
Und wie soll ich beweisen, dass z(xy)=e=(xy)z?
Wie kommt man darauf?

Bezug
                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mo 07.11.2011
Autor: fred97


> Was meinst du jetzt mit dem (+) ??
>  Und wie soll ich beweisen, dass z(xy)=e=(xy)z?

Setze ein was z ist.


>  Wie kommt man darauf?

Weil die Aufgabenstellung genau das verlangt.

FRED


Bezug
                                
Bezug
Gruppen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:36 Mo 07.11.2011
Autor: tingel-tangel-rob

Also setze ich jetzt [mm] z=y^{-1}x^{-1} [/mm] bei z(xy)=e=(xy)z ein?

Bezug
                                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mo 07.11.2011
Autor: kamaleonti


> Also setze ich jetzt [mm]z=y^{-1}x^{-1}[/mm] bei z(xy)=e=(xy)z ein?

Ja. Was hast du dann? Schreib es doch einmal hin. Verwende dann, um etwa z(xy)=e zu zeigen, die Gruppeneigenschaften Assoziativität sowie des inversen und neutralen Elements.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de