www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gruppenhomomorphismus
Gruppenhomomorphismus < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Sa 06.11.2010
Autor: Mandy_90

Guten Abend

Ich versuche grad den Beweis zu folgender Aussage nachzuvollziehen.Aber ich bin mir nicht sicher ob ich die Aussage richtig verstanden habe.

Sei f:G-->H ein Gruppenhomomorphismus zwischen den Gruppen (G,*) und (H, ).Dann gilt
[mm] 1.f(e_{G})=e_{H}. [/mm]
Bedeutet das,dass das Bild des neutralen Elementes von G das neutrale Element von H ist?
Wenn ja,nehm ich das einfach mal so hin und versuche den Beweis zu verstehen.Beweis:
[mm] f(e_{G})=f(e_{G}*e_{G})=f(e_{G})*f(e_{G}) \Rightarrow e_{H}=f(e_{G}). [/mm]

Also bis zum Folgefeil versteh ich es,aber ich kann nicht nachvollziehen,wieso daraus folgt,dass [mm] e_{H}=f(e_{G}). [/mm]
Kann mir das bitte jemand erklären?

Vielen Dank
lg



        
Bezug
Gruppenhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Sa 06.11.2010
Autor: ChopSuey

Hi Mandy,

> Guten Abend
>  
> Ich versuche grad den Beweis zu folgender Aussage
> nachzuvollziehen.Aber ich bin mir nicht sicher ob ich die
> Aussage richtig verstanden habe.
>  
> Sei f:G-->H ein Gruppenhomomorphismus zwischen den Gruppen
> (G,*) und (H, ).Dann gilt
>  [mm]1.f(e_{G})=e_{H}.[/mm]
>  Bedeutet das,dass das Bild des neutralen Elementes von G
> das neutrale Element von H ist?

Nichts anderes steht da ;-)

>  Wenn ja,nehm ich das einfach mal so hin und versuche den
> Beweis zu verstehen.Beweis:
>  [mm]f(e_{G})=f(e_{G}*e_{G})=f(e_{G})*f(e_{G}) \Rightarrow e_{H}=f(e_{G}).[/mm]
>  
> Also bis zum Folgefeil versteh ich es,aber ich kann nicht
> nachvollziehen,wieso daraus folgt,dass [mm]e_{H}=f(e_{G}).[/mm]
>  Kann mir das bitte jemand erklären?

Gemäß der Gleichheit ist doch offensichtlich $ [mm] f(e_G) [/mm] = [mm] f(e_G)*f(e_G) [/mm] $

Wie ist das neutr. Element einer Gruppe denn definiert?

>  
> Vielen Dank
>  lg
>  
>  

Viele Grüße
ChopSuey

Bezug
                
Bezug
Gruppenhomomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:58 Sa 06.11.2010
Autor: geograf

Vielleicht hilft es, die Operatoren der jeweiligen Gruppen exakter hinzuschreiben.
Im Fall von G sei der Operator *, und bei H sei er [mm] \odot. [/mm]
Also lautet der Beweis eigentlich so:
$ [mm] f(e_{G})=f(e_{G}\*{}e_{G})=f(e_{G})\odot{}f(e_{G}) \Rightarrow e_{H}=f(e_{G}). [/mm] $

Bezug
        
Bezug
Gruppenhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Sa 06.11.2010
Autor: MontBlanc

Hallo,

du hast [mm] f(e_{G})=f(e_{G})*f(e_{G}) [/mm] multipliziere jetzt beide seiten mit [mm] f(e_{G})^{-1} [/mm] dann bekommst du [mm] e_{H}=f(e_{G}) [/mm] da [mm] f(e_{G})\in [/mm] H und [mm] f^{-1}(e_{G})\in [/mm] H ansonsten wäre H nicht geschlossen und daher keine Gruppe.

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de