www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Gruppenoperationen
Gruppenoperationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenoperationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:26 Do 21.05.2009
Autor: Heureka89

Also ich habe eine G-Menge M. [mm] G=GL_2, M=k^2 [/mm] x [mm] k^2, g*(m_1,m_2):= (gm_1, gm_2) [/mm]
Man soll nun die Bahnen, ein Repräsentantensystem und die Isotropiegruppe finden.

Meine Überlegungen:

Isotropiegruppe: [mm] E_2 [/mm]

Bahn: [mm] (a,b)\in [/mm] M   G(x,y) = { [mm] \summe_{k=1}^{2}a_{ik} x_k, \summe_{k=1}^{2}a_{ik} y_k [/mm] | [mm] A=(a_{ij}) \in [/mm] G }
Ich weiß nciht, wie man die Bahn besser aufschreiben kann. Und wie soll man ein Repräsentantensystem aufstellen, weil man braucht dazu ja je einen Vertreter aus einer Bahn?

        
Bezug
Gruppenoperationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 23.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Gruppenoperationen: Idee / Rückfrage
Status: (Frage) überfällig Status 
Datum: 02:38 So 24.05.2009
Autor: zahlenspieler

Hallo Heureka89,
> Also ich habe eine G-Menge M. [mm]G=GL_2, M=k^2[/mm] x [mm]k^2, g*(m_1,m_2):= (gm_1, gm_2)[/mm]
>  
> Man soll nun die Bahnen, ein Repräsentantensystem und die
> Isotropiegruppe finden.
>  
> Meine Überlegungen:
>  
> Isotropiegruppe: [mm]E_2[/mm]

Warum? Nehmen wir mal an, die Matrix [mm]A \in G[/mm] hätte Eigenwert 1; dann gilt doch für jedes Paar von Eigenvektoren [mm] (v_1, v_2)[/mm] zum Eigenwert 1 [mm] A * (v_1,v_2)=(A\cdot v_1, A \cdot v_2)=(v_1, v_2)[/mm].

>  
> Bahn: [mm](a,b)\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M   G(x,y) = { [mm]\summe_{k=1}^{2}a_{ik} x_k, \summe_{k=1}^{2}a_{ik} y_k[/mm]

> | [mm]A=(a_{ij}) \in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

G }

>  Ich weiß nciht, wie man die Bahn besser aufschreiben kann.
> Und wie soll man ein Repräsentantensystem aufstellen, weil
> man braucht dazu ja je einen Vertreter aus einer Bahn?

Wenn man dem Paar [mm](a,b) \in M[/mm] die Matrix [mm]\M_{a,b}\colon=begin{pmatrix} a \\ b \end{pmatrix}[/mm] zuordnet, wobei a die 1., b die 2. Zeile ist, dann ist [mm] a_{11}a +a_{12}b[/mm] die 1., [mm]a_{21}a +a_{22}b[/mm] die 2. Zeile des Matrizenprodukts [mm]A \cdot M_{a,b}, A=(a_ij)[/mm]. Wenn [mm]A \in G[/mm], dann ändert sich ja an der linearen (Un-)abhängigkeit der Zeilen von [mm]M_{a,b}[/mm] bzw. [mm] A \cdot M_{a,b}[/mm] nichts; also [mm] M_{a,b} \in G \gdw a,b \mbox{ sind linear unabhängig}[/mm].
Gruß
zahlenspieler

Bezug
                
Bezug
Gruppenoperationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:21 Do 28.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de