www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Gruppenring halbeinfach
Gruppenring halbeinfach < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenring halbeinfach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 So 24.01.2016
Autor: UniversellesObjekt

Sei $k$ ein halbeinfacher (möglicherweise nichtkommutativer) Ring und $G$ eine endliche Gruppe, deren Ordnung eine Einheit in $k$ ist. Dann ist der Gruppenring $k[G]$ wieder halbeinfach.

[Beweis: Sei $M$ ein $k[G]$-Modul. Nach der universellen Eigenschaft ist das dasselbe, wie ein $k$-Modul $M'$ mit $G$-Wirkung; hierbei ist $M'$ durch den unterliegenden $k$-Modul von $M$ gegeben. Untermoduln von $M$ entsprechen $G$-invarianten Untermoduln von $M'$. Sei [mm] $N\le [/mm] M$ ein Untermodul. Da $k$ halbeinfach ist, spaltet die Einbettung [mm] $N'\hookrightarrow [/mm] M'$, etwa durch eine $k$-lineare Projektion $p'$. Durch Durchschnittsbildung

[mm] $p=\frac{1}{\operatorname{ord}G}\sum_{g\in G}g^{-1}p'g$ [/mm]

erhält man eine $k[G]$-lineare Abbildung, welche die Einbettung von $k[G]$-Moduln [mm] $N\hookrightarrow [/mm] M$ spaltet.]

Frage: Ist meine Voraussetzung eine notwendige Bedingung dafür, dass $k[G]$ halbeinfach ist?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Gruppenring halbeinfach: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 27.01.2016
Autor: hippias

Auf die schnelle ist dies meiner Einschätzung nach notwendig. Ich betrachte den $k$-Homo. [mm] $\phi:k[G]\to [/mm] k$, der [mm] $g\in [/mm] G$ auf $1$ abbildet, dessen Kern ein $G$-Modul ist. Ich meine, sein $G$-Komplement ist [mm] $k(\sum_{g\in G} [/mm] g)$. Da [mm] $\phi$ [/mm] surjektiv ist, folgt, dass $|G|1$ in $k$ invertierbar ist.

Um zu zeigen, dass auch $k$ halbeinfach ist, würde ich den Untermodul [mm] $J(\sum_{g\in G} g)\leq [/mm] k[G]$, wobei $J$ ein Ideal von $k$ ist, und sein Komplement betrachten.



Bezug
        
Bezug
Gruppenring halbeinfach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 27.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de