www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Gültigkeit einer Gleichung
Gültigkeit einer Gleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gültigkeit einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 16.10.2012
Autor: Jane_P

Aufgabe
Betrachten Sie für jede natürliche Zahl n die Zahl
a(n):= 1/0! + 1/1! + ... + 1/n!.
Zeigen Sie, dass a(n)<3 für alle natürlichen Zahlen n e IN.

Hinweis: Beachten Sie, dass n!>2^(n-1) für 3≤n.

Ich weiß (oder glaube zu wissen), dass man eine vollständige Induktion durchführt, wenn man etwas für natürliche Zahlen beweisen will.

Allerdings verwirrt mich, dass in der Gleichung durch 0 geteilt wird. Und ich bin mir nicht sicher, was das Ausrufezeichen bedeutet.

Normalerweise würde ich n=0 setzen und dann n+1 einsetzen. Ich weiß aber nicht, wie ich eine Ungleichung beweisen kann, bisher habe ich immer nur Gleichungen bewiesen.

Es würde mich freuen, wenn mir jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gültigkeit einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 16.10.2012
Autor: fred97


> Betrachten Sie für jede natürliche Zahl n die Zahl
> a(n):= 1/0! + 1/1! + ... + 1/n!.
> Zeigen Sie, dass a(n)<3 für alle natürlichen Zahlen n e
> IN.
>
> Hinweis: Beachten Sie, dass n!>2^(n-1) für 3≤n.
>  Ich weiß (oder glaube zu wissen), dass man eine
> vollständige Induktion durchführt, wenn man etwas für
> natürliche Zahlen beweisen will.
>
> Allerdings verwirrt mich, dass in der Gleichung durch 0
> geteilt wird. Und ich bin mir nicht sicher, was das
> Ausrufezeichen bedeutet.

Für n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 1, ist $n!:=1*2*...*n$  und 0!:=1

Es wird also nirgends durch 0 geteilt.


>
> Normalerweise würde ich n=0 setzen und dann n+1 einsetzen.
> Ich weiß aber nicht, wie ich eine Ungleichung beweisen
> kann, bisher habe ich immer nur Gleichungen bewiesen.

Mit Induktion sollst Du das nicht machen, sondern den Hinweis verwenden.

Es ist n! > [mm] 2^{n-1} [/mm] für n [mm] \ge [/mm] 3, also

      [mm] \bruch{1}{n!}<\bruch{1}{2^{n-1}} [/mm] für  für n [mm] \ge [/mm] 3.

Nun wende das mal auf der rechten Seite von

   a(n):= 1/0! + 1/1! + ... + 1/n!

an.

FRED

>
> Es würde mich freuen, wenn mir jemand helfen könnte.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Gültigkeit einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Mi 17.10.2012
Autor: Jane_P

Muss ich eine beliebige Zahl für n wählen?

Und wo soll ich die [mm] 2^n-1 [/mm] einsetzen?

Bezug
                        
Bezug
Gültigkeit einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Mi 17.10.2012
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,


> Muss ich eine beliebige Zahl für n wählen?

Jo, für $n=0,1,2$ kannst du das direkt zeigen, für $n\ge 3$ schreibe

$\sum\limits_{k=0}^{n}\frac{1}{k!}=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\sum\limits_{k=3}^n{\frac{1}{k!}$

$=1+1+1/2+\sum\limits_{k=3}^n{\frac{1}{k!}$

Nun den Hinweis auf die Summe anwenden, dann Indexverschiebung so, dass die Summe wieder bei $k=0$ startet, dann die Formel für die endl. geometr. Reihe (geometr. Summenformel) nutzen und vereinfachen ...

>  
> Und wo soll ich die [mm]2^n-1[/mm] einsetzen?  

Gruß

schachuzipus


Bezug
                                
Bezug
Gültigkeit einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Mi 17.10.2012
Autor: Jane_P

Vielen Dank, ihr beiden!
Das hat mir echt sehr geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de