HDI < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:34 Di 30.09.2008 | Autor: | robertl |
Aufgabe | Gegeben sei die Funkrion f(x)= [mm] (x-2x^2)/5 [/mm] . bilde die Integralfunktion I (untere Grenze a) und bestätige anschließend den HAauptsatz der Differenzial-und Integralrechnung |
I also die Integralfunktion wäre [mm] \integral_{a}^{x}{(x-2x^2)/5 dx} [/mm]
= [mm] (1/5x^2-2/15 x^3 [/mm] )- [mm] (1/5a^2- [/mm] 2/15 [mm] a^3) [/mm] ist das richtiog? weil ich verwechsel immer Integrallfunktion mit Stammfunktion...
ABER wie soll ich damit den HDI (hauptsatz der Differential-und Integralrechnung) beweisen???
dieser lautet [mm] \integral_{a}^{b}{f(x) dx}= [/mm] F(b)- F(a)
das sieht man schon an I allerdings ist das ein Beweis??
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:15 Di 30.09.2008 | Autor: | Marcel |
Hallo!
> Gegeben sei die Funkrion f(x)= [mm](x-2x^2)/5[/mm] . bilde die
> Integralfunktion I (untere Grenze a) und bestätige
> anschließend den HAauptsatz der Differenzial-und
> Integralrechnung
> I also die Integralfunktion wäre
> [mm]\integral_{a}^{x}{(x-2x^2)/5 dx}[/mm]
> = [mm](\underbrace{\red{1/5}}_{\text{ersetzen durch }1/10}x^2-2/15 x^3[/mm] )- [mm](\underbrace{\red{1/5}}_{\text{siehe links}}\underbrace{\red{a^2}}_{\text{ersetzen durch }x^2}-[/mm] 2/15 [mm]a^3)[/mm] ist das richtiog?
Abgesehen davon, dass man keine Integrationsgrenze als Integrationsvariable benutzen sollte, habe ich Fehler korrigiert. Denn es ist
[mm] $$\int_a^x (t-2t^2)/5\;dt={\left[\blue{\frac{1}{10}}t^2-\frac{2}{15}t^3\right]}_a^x\,.$$
[/mm]
Bis auf Kleinigkeiten ist das ansonsten in Ordnung.
> weil ich verwechsel immer Integrallfunktion mit
> Stammfunktion...
> ABER wie soll ich damit den HDI (hauptsatz der
> Differential-und Integralrechnung) beweisen???
> dieser lautet [mm]\integral_{a}^{b}{f(x) dx}=[/mm] F(b)- F(a)
> das sieht man schon an I allerdings ist das ein Beweis??
Naja, der Hauptsatz lautet so:
Wiki, Hauptsatz
Du sollst den Hauptsatz nicht anhand eines Beispiels beweisen (das wäre ja eh kein Beweis), sondern Du sollst Dir klar machen:
Die Funktion $f: [mm] \IR \to \IR, [/mm] x [mm] \mapsto f(x)=(x-2x^2)/5$ [/mm] ist stetig (auf [mm] $\IR$). [/mm] Du hast ja nun quasi für diese Funktion [mm] $\black{f}$ [/mm] die Newton-Leibnitz-Formel benutzt (siehe Wiki, was ich damit meine), um die Integralfunktion aufzustellen. Nennen wir die mal [mm] $F_a$, [/mm] also:
[mm] $F_a(x):=\int_a^x (t-2t^2)/5\;dt=...=\frac{1}{10}x^2-\frac{2}{15}x^3-\frac{1}{10}a^2+\frac{2}{15}a^3\,.$
[/mm]
Nach dem HDI sollte, weil [mm] $\black{f}$ [/mm] stetig ist, dann ja [mm] $F_a$ [/mm] differenzierbar (auf ganz [mm] $\IR$) [/mm] sein mit [mm] $F_a'=f$. [/mm] Dass diese Aussage stimmt, sollst Du bestätigen (zumindest interpretiere ich die Aufgabe so, alles andere erscheint mir (noch) sinnlos(er)).
Wobei ich die Aufgabe hier wirklich etwas sinnlos finde, denn im Prinzip ist das ganze nur Rechnerei, wobei man sich im Kreise dreht. Denn wie wurde [mm] $F_a$ [/mm] schrittweise konstruiert? Naja, überprüfen kannst Du es ja dennoch mal...
(Etwas sinnvoller wäre die Aufgabe, wenn man [mm] $\int_a^x...$ [/mm] nicht mithilfe einer Stammfunktion, sondern auf anderem Wege, z.B. mit Riemann-Summen berechnen würde...)
Gruß,
Marcel
|
|
|
|