www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - HIR / ggT
HIR / ggT < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

HIR / ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mo 13.10.2008
Autor: Irmchen

Guten Tag!

Ich habe hier eine Satz, zu dem es leider in meiner Vorlseung keinen Beweis gibt. Meine Frage beschäftigt sich aber mit dem Sinn dieses Satzes.Also, was steckt dahinter....? Ich habe auch in unseren Übungen nach Aufgaben  diesbezüglich gesucht, leider ohne Erfolg ... :-(

Satz :

Sei R ein HIR ( Hauptidealring + Integritätsring ) und [mm] a,b \in R [/mm].
Sei [mm] \langle a, b \rangle : = aR + bR [/mm]
das Ideal , das von a und b erzeugt wird und
[mm] dR = \langle a, b \rangle [/mm].
Dann ist  d ein ggT (a,b ).

Es ist ja so, dass , weil R ein Hauptidealring ist, jedes Ideal ein Hauptideal ist. Und wenn wir nun ein Ideal nehmen, welches von 2 Elementen aus R erzeugt wird , dann wird genau dieses Ideal auch  von dem ggT dieser beiden Elemente erzeugt... Ungefähr so?

Viele Grüße
Irmchen

        
Bezug
HIR / ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Di 14.10.2008
Autor: PeterB

Das ggT von zwei Elementen $a,b$ in einem Ring $R$ ist definiert als ein Element [mm] $d\in [/mm] R$ mit $d|a$ und $d|b$ und wenn [mm] $\forall c\in [/mm] R$ mit $c|a$ und $c|b$ folgt $c|d$. So etwas nennt man eine universelle Eigenschaft. Im Allgemeinen ist nicht klar dass ein solches Element existiert. Tatsächlich gibt es Beispiele von Ringen wo das nicht der Fall ist.

Dein Satz sagt nun: "In Hauptidealringen gibt es immer ein ggT." Das ist doch schon mal eine nette Aussage. Allerdings gilt allgemeiner, dass es in faktoriellen Ringen ein ggT gibt, weshalb diese Anwendung nicht so wichtig ist.
Die zweite (wichtigere) Anwendung ist: "In HIR kann man das ggT durch die Elemente darstellen." In Formeln: $d=ra+sb$ mit [mm] $r,s\in [/mm] R$ auch das ist im Allgemeinen falsch, selbst wenn das ggT existiert. Für einige Rechnungen ist das aber praktisch.
Schließlich ist es eine Methode das ggT in einem HIR zu berechnen, in der kein euklidischer Ring ist. Allerdings habe ich diese Anwendung noch nie gesehen.

Gruß
Peter

Bezug
                
Bezug
HIR / ggT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Di 14.10.2008
Autor: Irmchen

Vielen lieben Dank für den Beitrag!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de