www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungspunkte einer Menge
Häufungspunkte einer Menge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Fr 16.04.2010
Autor: steppenhahn

Aufgabe
Welche Häufungspunkte hat die Menge

[mm] $M:=\left\{\frac{1}{m}+\frac{1}{n}\Big|m,n\in\IN\right\}$ [/mm]

Hallo!

Meine Vermutung ist:
Die Häufungspunkte sind alle Elemente der Menge [mm] \left\{\frac{1}{n}\Big|n\in\IN\right\}\cup\{0\}$. [/mm]

Beweis-Skizze:
- Da [mm] $\frac{1}{n}\to [/mm] 0$ [mm] (n\to\infty), [/mm] ist 0 HP.
- Für festes [mm] m\in\IN [/mm] hat die Menge M die folgende Gestalt:

[mm] $M_{m}:=\left\{\frac{1}{m}+\frac{1}{n}\Big|n\in\IN\right\}$ [/mm]

Da [mm] $\frac{1}{n}\to [/mm] 0$ [mm] (n\to\infty), [/mm] ist dann [mm] \frac{1}{m} [/mm] HP.

- Sei [mm] $r\in\IR\textbackslash [/mm] M$. Dass r < 0 kein HP sein kann, ist "klar". Aber wie kann ich (schnell) zeigen, dass auch für r > 0 kein HP vorliegt? Oder ist das falsch?

Danke für Eure Hilfe!
Grüße,
Stefan

        
Bezug
Häufungspunkte einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Sa 17.04.2010
Autor: SEcki


> - Sei [mm]r\in\IR\textbackslash M[/mm]. Dass r < 0 kein HP sein
> kann, ist "klar". Aber wie kann ich (schnell) zeigen, dass
> auch für r > 0 kein HP vorliegt? Oder ist das falsch?

Sei [m]\frac{1}{m_k}+\frac{1}{n_k}\to h[/m] gegeben. Nun betrachte ich für jedes  [m]m\in\IN[/m] die Menge [m]N_m[/m], die aus allen [m]n_k[/m] besteht, so dass [m]m_k=m[/m] hält. Man sieht, dass die Menge [m]N_k[/m] nicht für mehr als ein m unenldich sein können (dann hätten wir zwei paarw. verschieden HP!). Ist es für ein [m]N_k [/m] unendlich, konvergiert eine TF gegen so ein m. Seien also alle [m]N_m[/m] endlich. Dann mache ich das gleiche Argument mit n an Stelle von n und erhalte auch all [m]N_n[/m] sind endlich. Sei also [m]0<1/l[/m] gegeben, dann gibt es nur endlich viele Folgenglieder mit [m]1/l<\frac{1}{m_k}+\frac{1}{n_k}[/m], also konvergiert es gegen 0.

SEcki

Bezug
                
Bezug
Häufungspunkte einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Sa 17.04.2010
Autor: steppenhahn

Hallo!

Danke für deine Antwort, SEcki!
Allerdings, gebe ich zu, komme ich damit noch nicht zurecht.


> > - Sei [mm]r\in\IR\textbackslash M[/mm]. Dass r < 0 kein HP sein
> > kann, ist "klar". Aber wie kann ich (schnell) zeigen, dass
> > auch für r > 0 kein HP vorliegt? Oder ist das falsch?

  

> Sei [m]\frac{1}{m_k}+\frac{1}{n_k}\to h[/m] gegeben.

Was meinst du damit?

> Nun betrachte
> ich für jedes  [m]m\in\IN[/m] die Menge [m]N_m[/m], die aus allen [m]n_k[/m]
> besteht, so dass [m]m_k=m[/m] hält.

Meinst du die Menge [mm] $N_{m} [/mm] = [mm] \left\{\frac{1}{n}+\frac{1}{m}\Big| n\in\IN\right\}$ [/mm]

> Man sieht, dass die Menge [m]N_k[/m]
> nicht für mehr als ein m unenldich sein können (dann
> hätten wir zwei paarw. verschieden HP!).

Was ist [mm] N_{k} [/mm] ?

> Ist es für ein
> [m]N_k[/m] unendlich, konvergiert eine TF gegen so ein m. Seien
> also alle [m]N_m[/m] endlich. Dann mache ich das gleiche Argument
> mit n an Stelle von n und erhalte auch all [m]N_n[/m] sind
> endlich. Sei also [m]0<1/l[/m] gegeben, dann gibt es nur endlich
> viele Folgenglieder mit [m]1/l<\frac{1}{m_k}+\frac{1}{n_k}[/m],
> also konvergiert es gegen 0.

Bitte erkläre mir deinen Beweis etwas ausführlicher - sonst verstehe ich ihn nicht :-(

Danke für Eure Mühen!

Grüße,
Stefan

Bezug
                        
Bezug
Häufungspunkte einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Sa 17.04.2010
Autor: SEcki


> > Sei [m]\frac{1}{m_k}+\frac{1}{n_k}\to h[/m] gegeben.
>  
> Was meinst du damit?

Wenn h ein HP ist, dann konvergiert eine Folge aus Elementen der MEnge dagegen, die Folge sei [m](a_k), a_k=\frac{1}{m_k}+\frac{1}{n_k}[/m]. Dadurch sind die [m]m_k,n_k[/m] definiert.

> > Nun betrachte
> > ich für jedes  [m]m\in\IN[/m] die Menge [m]N_m[/m], die aus allen [m]n_k[/m]
> > besteht, so dass [m]m_k=m[/m] hält.
>  
> Meinst du die Menge [mm]N_{m} = \left\{\frac{1}{n}+\frac{1}{m}\Big| n\in\IN\right\}[/mm]

Nein, natürlich nicht - das macht überhaupt keinen Sinn. Ich partioniere die Elemente, die in meiner Teilfolge vorkommen.

> > Man sieht, dass die Menge [m]N_k[/m]
> > nicht für mehr als ein m unenldich sein können (dann
> > hätten wir zwei paarw. verschieden HP!).
>  
> Was ist [mm]N_{k}[/mm] ?

Ich meinte hier [m]N_m[/m] ...

> Bitte erkläre mir deinen Beweis etwas ausführlicher -
> sonst verstehe ich ihn nicht :-(

Die Idee ist simpel: ich schaue mir an welche Form die Elemente der konvergenten TF haben - gibt es unedlich viele Gleider in der TF, so dass ein m gibt mit [m]a_k=1/m+1/n_k[/m], konvergiert es gegen m, genauso für n anstatt m. Sie l mit [m]0l[/m] (muss man sich wohlmöglich noch ganz genau überlegen - dein Zug!), daher konvergiert [m](a_k)[/m] gegen 0.

SEcki

Bezug
                                
Bezug
Häufungspunkte einer Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Sa 17.04.2010
Autor: steppenhahn

Hallo!

Danke wieder für deine Hilfe, SEcki!

> Die Idee ist simpel: ich schaue mir an welche Form die
> Elemente der konvergenten TF haben - gibt es unedlich viele
> Gleider in der TF, so dass ein m gibt mit [m]a_k=1/m+1/n_k[/m],
> konvergiert es gegen m, genauso für n anstatt m. Sie l mit
> [m]0
> [m]a_k>l[/m] (muss man sich wohlmöglich noch ganz genau
> überlegen - dein Zug!)

:-) Mhh - im Grunde könnte das auch meine Ausgangsfrage gewesen sein - warum ist das so? (Ich glaube es ja ehrlich gesagt nicht einmal, denn wenn ich zum Beispiel

$l = [mm] \pi\4$ [/mm]

wähle, dann könnte es doch sein, dass für alle m, für die [mm] \frac{1}{m} [/mm] < [mm] \pi/4 [/mm] ist, die entsprechenden Mengen [mm] $N_{m}:=\left\{\frac{1}{m}+\frac{1}{n}\Big|n\in\IN\right\}$ [/mm] zusammen genügend Elemente in der Nähe von [mm] \pi/4 [/mm] haben.
...

Vielleicht stehe ich auf dem Schlauch - vielleicht ist aber der Beweis auch nicht ganz einfach..

Bitte um erneute Hilfe!
Grüße,
Stefan

Bezug
                                        
Bezug
Häufungspunkte einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Sa 17.04.2010
Autor: SEcki


> :-) Mhh - im Grunde könnte das auch meine Ausgangsfrage
> gewesen sein

Nein, das ist doch viel weiter gedacht.

> warum ist das so? (Ich glaube es ja ehrlich
> gesagt nicht einmal, denn wenn ich zum Beispiel

Weil für fixes m (bzw. n) die Menge [m]\{1/m+1/n_k\}[/m] endlich ist in unserem Fall. Falls jetzt [m]1/m,1/nl/2[/m] oder [m]1/n_k>l/2[/m].

> wähle, dann könnte es doch sein, dass für alle m, für
> die [mm]\frac{1}{m}[/mm] < [mm]\pi/4[/mm] ist, die entsprechenden Mengen
> [mm]N_{m}:=\left\{\frac{1}{m}+\frac{1}{n}\Big|n\in\IN\right\}[/mm]
> zusammen genügend Elemente in der Nähe von [mm]\pi/4[/mm] haben.
>  ...

Nein. Schau dir meine Argumente oben noch einmal an - es ist eine Fallunterschiedung!

> Vielleicht stehe ich auf dem Schlauch

Ja.

> - vielleicht ist aber
> der Beweis auch nicht ganz einfach..

Er ist nicht ganz trivial, aber nicht raffiniert.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de