www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungspunkte & innere Punkte
Häufungspunkte & innere Punkte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungspunkte & innere Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Sa 03.01.2009
Autor: DarkCell

Aufgabe
Gegeben seien folgende Mengen:
[mm] D_{1} [/mm] = [0,1] [mm] \cup \{ \bruch{2n}{n+1} | n \in \IN \} [/mm]

[mm] D_{2} [/mm] = [mm] ]0,\infty[ [/mm]

[mm] D_{3} [/mm] = [1,2] [mm] \cup \{ \bruch{3n+1}{2n+1} | n \in \IN \} [/mm]

[mm] D_{4} [/mm] = [0,1] [mm] \times [/mm] ]0,1[

Man gebe für jede Menge die Menge ihrer Häfungspunkte bzw. inneren Punkte an und kläre, ob die Menge abgeschlossen oder offen ist?

Ich habe leider immer noch nicht ganz verstanden was es mit diesen ominösen Häufungspunkten und inneren Punkten auf sich hat.
Nach der Anleitung die wir hatten, habe ich es soweit verstanden, dass ich z.B. bei [mm] D_{1} [/mm] Folgen finden muss, die gegen verschiedene [mm] x_{0} [/mm] streben und diese [mm] x_{0} [/mm] sind dann die Häufungspunkte richtig? Achja diese Folgen müssen natürlich selber in [mm] D_{1} [/mm] liegen. Also wären die Häfungspunkte bei [mm] D_{1} [/mm] doch [0,1] oder? Und damit die Menge abgeschlossen?
Muss ich jetzt auch auf innere Punkte testen oder schließt sich das gegenseitig aus?
Und wie mache ich das mit den inneren Punkten, das hatten wir nicht mehr in der Anleitung.
Außerdem weiß ich auch bei den anderen drei Mengen nicht wie ich das mit den Häufungspunkten machen soll, besonders bei [mm] D_{4}. [/mm]

Danke schonmal im Voraus.

        
Bezug
Häufungspunkte & innere Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 04.01.2009
Autor: rainerS

Hallo!

> Gegeben seien folgende Mengen:
>  [mm]D_{1}[/mm] = [0,1] [mm]\cup \{ \bruch{2n}{n+1} | n \in \IN \}[/mm]
>  
> [mm]D_{2}[/mm] = [mm]]0,\infty[[/mm]
>  
> [mm]D_{3}[/mm] = [1,2] [mm]\cup \{ \bruch{3n+1}{2n+1} | n \in \IN \}[/mm]
>  
> [mm]D_{4}[/mm] = [0,1] [mm]\times[/mm] ]0,1[
>  
> Man gebe für jede Menge die Menge ihrer Häfungspunkte bzw.
> inneren Punkte an und kläre, ob die Menge abgeschlossen
> oder offen ist?
>  Ich habe leider immer noch nicht ganz verstanden was es
> mit diesen ominösen Häufungspunkten und inneren Punkten auf
> sich hat.
>  Nach der Anleitung die wir hatten, habe ich es soweit
> verstanden, dass ich z.B. bei [mm]D_{1}[/mm] Folgen finden muss, die
> gegen verschiedene [mm]x_{0}[/mm] streben und diese [mm]x_{0}[/mm] sind dann
> die Häufungspunkte richtig? Achja diese Folgen müssen
> natürlich selber in [mm]D_{1}[/mm] liegen.

Richtig, aber die Häufungspunkte müssen das nicht!

> Also wären die
> Häfungspunkte bei [mm]D_{1}[/mm] doch [0,1] oder? Und damit die
> Menge abgeschlossen?

Du hast insofern recht, dass alle Punkte $[0,1]$ Häufungspunkte der Menge [mm] $D_1$ [/mm] sind. (Allgemeine sind alle Punkte eines Intervalls reeller Zahlen Häufungspunkte.) Aber du hast den zweiten Teil der Menge noch nicht genau genug angeschaut.

>  Muss ich jetzt auch auf innere Punkte testen oder schließt
> sich das gegenseitig aus?

Es schließt sich nicht gegenseitig aus.

>  Und wie mache ich das mit den inneren Punkten, das hatten
> wir nicht mehr in der Anleitung.

Ich weiß nicht, wie ihr innere Punkte definiert habt. Meine Regel ist immer: die inneren Punkte sind das, was übrigbleibt, wenn man alle Randpunkte und isolierten Punkte weglässt.

>  Außerdem weiß ich auch bei den anderen drei Mengen nicht
> wie ich das mit den Häufungspunkten machen soll, besonders
> bei [mm]D_{4}.[/mm]

[mm] $D_2$ [/mm] besteht aus allen positiven reellen Zahlen. Kannst du zu jeder positiven reellen Zahl a eine Folge positiver reeller Zahlen finden, die gegen a konvergiert?

Bei [mm] $D_3$ [/mm] solltest du dir genau überlegen, welche Punkte in der zweiten Komponente liegen.

[mm] $D_4$ [/mm] ist ein kartesisches Produkt, eine Teilmenge des [mm] $\IR^2$. [/mm] Nimm an, du hast also ein [mm] $(x,y)\in D_4$. [/mm] Suche nun eine Folge [mm] $(x_n,y_n)$, [/mm] die gegen $(x,y)$ konvergiert. Kannst du sie finden, ist $(x,y)$ ein Häufungspunkt.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de