www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Häufungswert
Häufungswert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Häufungswert: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:46 So 14.11.2010
Autor: sanane

Geben Sie für die Folgen alle reellen Häufungswerte an und entscheiden Sie jeweils, ob Konvergenz oder Divergenz vorliegt. Begründen Sie alle Ihre Ergebnisse. Begründen Sie auch für den Fall, dass keine reellen Häufungswerte vorkommen.

[mm] an=1/23-2(-3)^n [/mm]

ich habe jetzt ermittelt, dass diese folge unbestimmt divergent gegen unendlich ist, wäre das erstmal richtig?
die definition des Häufungpunktes verlangt ja dass in jeder Umgebung unendlich viele Folgenglieder liegen, das wär in diesem Fall ja nicht so, oder? ... :S... ich habe mir auf ihrer seite schon einige beispiele angeguckt, aber irgendwie versteh ich das nicht... also bitte hilft mir :(

        
Bezug
Häufungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 So 14.11.2010
Autor: Lippel

Hallo,

> Geben Sie für die Folgen alle reellen Häufungswerte an
> und entscheiden Sie jeweils, ob Konvergenz oder Divergenz
> vorliegt. Begründen Sie alle Ihre Ergebnisse. Begründen
> Sie auch für den Fall, dass keine reellen Häufungswerte
> vorkommen.
>  
> [mm]an=1/23-2(-3)^n[/mm]
>  
> ich habe jetzt ermittelt, dass diese folge unbestimmt
> divergent gegen unendlich ist, wäre das erstmal richtig?

Den Ausdruck "unbestimmt divergent" habe ich ehrlich gesagt noch nicht gehört, richtig ist aber, dass die Folge divergiert. Um die Divergenz zu beweisen kannst du beispielsweise eine obere Schranke für den Betrag von [mm] $a_n$ [/mm] annehmen und dies zu einem Widerspruch führen.

> die definition des Häufungpunktes verlangt ja dass in
> jeder Umgebung unendlich viele Folgenglieder liegen, das
> wär in diesem Fall ja nicht so, oder?

Richtig. Die Folge ist ja alternierend, da sich je nach Vorzeichen von $n$ das Vorzeichen von [mm] $2(-3)^n$ [/mm] ändert. nun kannst du die Folge in zwei Teilfolgen zerlegen (einmal n gerade und einmal n ungerade) und zeigen, dass diese Teilfolgen monoton steigend bzw. fallend sind und nicht beschränkt. Damit hast du gezeigt, dass es keine Häufungswerte geben kann.

Grüße, Lippel


Bezug
                
Bezug
Häufungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 So 14.11.2010
Autor: sanane

geht man eigentlich immer so vor, dass man dann für  n jeweils eine gerade und ungerade zahl einsetzt ?

Bezug
                        
Bezug
Häufungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 So 14.11.2010
Autor: Lippel


> geht man eigentlich immer so vor, dass man dann für  n
> jeweils eine gerade und ungerade zahl einsetzt ?

Erstmal kann für n natürlich jede natürliche Zahl eingesetzt werden, um dann jeweils das Folgenglied [mm] $a_n$ [/mm] zu erhalten. Die Unterteilung in zwei Teilfolgen, eine für positive n und eine für negative n, macht hier Sinn, da n als Exponent einer negativen Zahl auftritt. Das Vorzeichen der Potenz ist damit eben $+$, wenn n gerade, und $-$, wenn n ungerade ist.
Man geht aber nicht generell bei der Untersuchung von Folgen so vor. Nur in diesem speziellen Fall macht es eben Sinn.

Viele Grüße, Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de