www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Halbgruppenhomomorphismen
Halbgruppenhomomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 So 24.10.2010
Autor: l1f3x

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich habe gerade folgendes Problem: Es geht in einer Aufgabe hier darum, zu zeigen, dass ein Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen kein Monoidhomomorphismus ist. Dabei habe ich schon folgendes, grundlegendes Problem:
Warum gilt die bei Gruppen übliche Argumentation, dass das Bild des neutralen Elementes der einen Gruppe dem neutralen Element der anderen Gruppe entspricht, hier nicht? Damit meine ich folgendes:

[mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H [/mm]


        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:40 So 24.10.2010
Autor: felixf

Moin!

>  ich habe gerade folgendes Problem: Es geht in einer
> Aufgabe hier darum, zu zeigen, dass ein
> Halbgruppenhomomorphismus zwischen Monoiden im Allgemeinen
> kein Monoidhomomorphismus ist. Dabei habe ich schon
> folgendes, grundlegendes Problem:
> Warum gilt die bei Gruppen übliche Argumentation, dass das
> Bild des neutralen Elementes der einen Gruppe dem neutralen
> Element der anderen Gruppe entspricht, hier nicht? Damit
> meine ich folgendes:
>  
> [mm]f:G\to H, f(e_G * g)=f(g)=f(e_G)*f(g)für alle g\Rightarrow f(e_G)=e_H[/mm]

Wenn $f$ surjektiv ist, gilt dies.

$f$ muss aber nicht surjektiv sein.

Und das, was du hingeschrieben hast, ist auch nicht das Argument, was man in Gruppen benutzt. Da macht man naemlich: [mm] $f(e_G) [/mm] = [mm] f(e_G [/mm] * [mm] e_G) [/mm] = [mm] f(e_G) [/mm] * [mm] f(e_G)$; [/mm] und wenn man mit [mm] $f(e_G)^{-1}$ [/mm] multipliziert, steht da [mm] $e_H [/mm] = [mm] f(e_G)$. [/mm]

Das meiste davon geht in einer Halbgruppe auch, aber der entscheidene Schritt, naemlich die Existenz von [mm] $f(e_G)^{-1}$, [/mm] die ist im Allgemeinen nicht gegeben!

(Und daran scheitert es dann auch...)

Was fuer echte Halbgruppen (die nicht gleichzeitig Gruppen sind) kennst du denn?

LG Felix


Bezug
                
Bezug
Halbgruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 24.10.2010
Autor: l1f3x

Danke schonmal! Mir ist jetzt klarer wo genau das Problem hier liegt. Als Monoide fallen mir die natürliche Zahlen ein, mit Addition oder Multiplikation als Verknüpfung. Da habe ich aber keine Idee wie ich einen entsprechenden Homomorphismus konstruieren könnte. Deshalb habe ich es mal mit dem Monoid versucht, der aus der Potenzmenge und der Inklusion als Verknüpfung besteht:

Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm] sind Monoide. Dann müsste folgende Abbildung:

[mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
Dabei ist m ein festes Element von M. Dies müsste ein Halbgruppenhomomorphismus sein. Aber da [mm]f(M)=M\not=N[/mm] kein Monoidhomomorphismus. Stimmt das? Gibt es da auch einfachere Beispiele?

Bezug
                        
Bezug
Halbgruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 24.10.2010
Autor: felixf

Moin!

> Danke schonmal! Mir ist jetzt klarer wo genau das Problem
> hier liegt. Als Monoide fallen mir die natürliche Zahlen
> ein, mit Addition oder Multiplikation als Verknüpfung.

Die natuerlichen Zahen (inklusive Null!) zusammen mit der Multiplikation sind gut. Du kannst einen einfachen Halbgruppenmonomorphismus [mm] $\IN \to \IN \times \IN$ [/mm] angeben, der kein Monoidhomomorphismus ist.

> Da
> habe ich aber keine Idee wie ich einen entsprechenden
> Homomorphismus konstruieren könnte. Deshalb habe ich es
> mal mit dem Monoid versucht, der aus der Potenzmenge und
> der Inklusion als Verknüpfung besteht:
>  
> Sei [mm]M \subset N,\: G=(\mathcal{P}(M),\cap),\:H=(\mathcal{P}(N),\cap)[/mm]
> sind Monoide. Dann müsste folgende Abbildung:
>  
> [mm]f:G \to H,\:f(A)=A\:falls\:m \in A,\:f(A)= \emptyset\:falls\:m \not\in A[/mm]
>  
> Dabei ist m ein festes Element von M.

Warum nicht einfach gleich $f$ als Inklusion $G [mm] \to [/mm] H$? Das reicht hier schon voellig.

> Dies müsste ein
> Halbgruppenhomomorphismus sein.

Ja, das duerfte es.

> Aber da [mm]f(M)=M\not=N[/mm] kein
> Monoidhomomorphismus. Stimmt das?

Falls $M$ eine echte Teilmenge von $N$ ist, ja.

> Gibt es da auch
> einfachere Beispiele?  

Siehe oben :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de