www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Halbräume, Polyeder
Halbräume, Polyeder < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbräume, Polyeder: Idee
Status: (Frage) beantwortet Status 
Datum: 15:18 Di 12.04.2011
Autor: Kampfkekschen

Aufgabe
Seien [mm] P_1=(0,4), P_2=(5,5),P_3=(5,0) [/mm] und [mm] P_4=(4,0) [/mm] Punkte im [mm] \IR^2. [/mm] Weiter seien [mm] f_1=\overline{P_1P_2}, f_2=\overline{P_2P_3}, f_3=\overline{P_3P_4} [/mm] und [mm] f_4=\overline{P_4P_1} [/mm] die Verbindungslinien.
Geben Sie konkrete Halbräume an, deren Durchschnitt P ist.

Hallo zusammen,

bearbeite grade diese Aufgabe und komme da nicht so ganz mit zurecht!
Also mir ist nicht ganz klar, wie ich anhand der Punkte und der Verbindungslinien Halbräume angeben kann.
Also ein abgeschlossener Halbraum wäre
P(c,z)={x [mm] \in \IR^n| [/mm] c^Tx [mm] \le z}=f^{-1}(z) [/mm]
und ein offener Halbraum
[mm] f^{-1}(z,\infty [/mm] )= {x [mm] \in \IR^n| [/mm] c^Tx > z}

kann mir vllt jemand ein bisschen weiterhelfen?
Gruß,
Kekschen

        
Bezug
Halbräume, Polyeder: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Di 12.04.2011
Autor: fred97

Was P ist kann ich mir zusammenreimen !


Mach Dir doch ein Bild, dann siehst Du:

     [mm] $P=\bigcap_{i=1}^{3}H_i$, [/mm]

wobei

    [mm] $H_1=\{(x,y) \in \IR^2: 0 \le y \le \bruch{1}{5}x+4\}$, [/mm]

    [mm] $H_2=\{(x,y) \in \IR^2: x \le 5\}$ [/mm]

und

     [mm] $H_3=\{(x,y) \in \IR^2: y \ge 4-x\}$ [/mm]

FRED

Bezug
                
Bezug
Halbräume, Polyeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Di 12.04.2011
Autor: Kampfkekschen

Danke für die schnelle Antwort. Habe allerdings vergessen zu schreiben, dass P das entstandene Viereck ist.
Das [mm] P=\bigcap_{i=1}^{3}H_ [/mm] gilt ist mir bewusst, aber mir ist immer noch nicht klar wie ich auf die einzelnen Halbräume komme!
Kann mir das nochmal jemand erklären?

Danke.

Bezug
                        
Bezug
Halbräume, Polyeder: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Mi 13.04.2011
Autor: fred97


> Danke für die schnelle Antwort. Habe allerdings vergessen
> zu schreiben, dass P das entstandene Viereck ist.
>  Das [mm]P=\bigcap_{i=1}^{3}H_[/mm] gilt ist mir bewusst, aber mir
> ist immer noch nicht klar wie ich auf die einzelnen
> Halbräume komme!
> Kann mir das nochmal jemand erklären?

mach Dir eine Skizze und zeichne die geradenstücke ein, die P beranden.

FRED

>  
> Danke.


Bezug
                                
Bezug
Halbräume, Polyeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:04 Sa 23.04.2011
Autor: Kampfkekschen

habs dann doch noch gesehen! aber danke für die hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de