www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Halbseitige Grenzwerte
Halbseitige Grenzwerte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbseitige Grenzwerte: Frage
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 22.12.2004
Autor: Tintenfisch

ICh habe diese Frage in keinem anderen Forum gestellt.
Hallo Leute!
Bei meinen Wiederholungen der Dinge, die ich in der Uni verpasst habe, bin ich jetzt auf Halbseitige Grenzwerte gestoßen.
Kann mir jemand sagen , wie ich die berechne?
Ein Beispiel wäre da:  [mm] \limes_{n\rightarrow\0} \bruch{sin x}{x} [/mm]
ICh weiß, dass man manchmal einfach den Grenzwert einsetzt.Hier ist aber das Problem, dass ich für x Null ja nicht einsetzen kann, da eine Division durch Null nicht erlaut ist.
Wäre für jede Art der Hlfe dankbar!
LIebe Grüße!

        
Bezug
Halbseitige Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mi 22.12.2004
Autor: Marcel

Hallo Tintenfisch,

> ICh habe diese Frage in keinem anderen Forum gestellt.
>  Hallo Leute!
>  Bei meinen Wiederholungen der Dinge, die ich in der Uni
> verpasst habe, bin ich jetzt auf Halbseitige Grenzwerte
> gestoßen.
>  Kann mir jemand sagen , wie ich die berechne?
>  Ein Beispiel wäre da:  [mm]\limes_{n\rightarrow\0} \bruch{sin x}{x} [/mm]

  
Ich nehme an, die Aufgabe lautet korrekt:
Es ist [mm]\limes_{\red{x} \red{\to} \red{0^+}} \bruch{\sin x}{x}[/mm]
zu berechnen!
(Oder $x [mm] \to [/mm] 0^-$, das geht aber genauso. $x [mm] \to [/mm] 0$ nehme ich nicht an (was aber auch so bzw. analog ginge wie im Folgenden beschrieben!) Wozu schreibst du sonst Halbseitige Grenzwerte in der Überschrift?)

Nun zu deiner Aufgabe:
Da [mm] $\limes_{x \to 0^+} [\sin(x)]=0=\limes_{x \to 0^+}x$ [/mm] gilt, und da [m]f:\IR \to \IR[/m] mit [mm] $f(x):=\sin(x)$ ($\forall [/mm] x [mm] \in \IR$) [/mm] und [mm] $g:\IR \to \IR$ [/mm] definiert durch $g(x):=x$ [mm] ($\forall [/mm] x [mm] \in \IR$) [/mm] diff'bar sind (insbesondere in [mm] $x_0=0$), [/mm] und da $g'(x)=1 [mm] \not=0$ ($\forall [/mm] x [mm] \in \IR$) [/mm] gilt, kannst du die Regel von []"de l'Hôpital" anwenden (vgl. auch []http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf, Satz 13.22, S. 126 f., skriptinterne Zählung)

Viele Grüße,
Marcel

Bezug
                
Bezug
Halbseitige Grenzwerte: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:22 Mi 22.12.2004
Autor: Tintenfisch

Also betrachte ich zunächst den Zähler,richtig? Und dannschaue ich mir die Ableitng des Nenners an? Anscheinend ist das ein bisschen anders als im Skript,aberdas macht gar nichts. NUr ganz durchgestiegen bin ich durch das ganze durch deine Ausführungen nochnicht.   Ich setze also Null für x im Zähler,im Nenner geht dies ja nicht. Deshalb nutze ich die Ableitung,und dann?

Bezug
                        
Bezug
Halbseitige Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Do 23.12.2004
Autor: Marcel

Hallo Tintenfisch,

> Also betrachte ich zunächst den Zähler,richtig? Und dannschaue ich mir
> die Ableitng des Nenners an? Anscheinend ist das ein bisschen anders
> als im Skript,aberdas macht gar nichts. NUr ganz durchgestiegen bin ich
> durch das ganze durch deine Ausführungen nochnicht.  

In meinen Ausführungen habe ich nur begründet, warum man den Satz von de L'Hôpital (so, wie er im Skript steht) anwenden darf, mehr nicht!

> Ich setze also
> Null für x im Zähler,im Nenner geht dies ja nicht. Deshalb nutze ich die
> Ableitung,und dann?

Du hast hier, wie im Skript steht, einen Fall "0/0" bei der Grenzwertbetrachtung vorliegen. Daher denkt man dann direkt an "de L'Hôpital" (oder sollte daran denken ;-)).

Aber okay, ich schreibe dir mal noch den ersten Schritt hin. Den nächsten machst du dann alleine, dann bist du nämlich schon so gut wie fertig (falls es Probleme gibt, frag bitte nochmal konkret nach):
Es gilt:
[m]\lim_{x \to 0^+}\frac{\sin(x)}{x}\stackrel{de\,L'H\hat{o}pital}{=}\lim_{x \to 0^+}\frac{[\sin(x)]'}{[x]'}[/m].
[Zur Erinnerung/Erläuterung:
Mit [mm] $[\sin(x)]'$ [/mm] ist die Ableitung des Sinus gemeint (also genauer: die Ableitung der Funktion $f$, wobei [m]f:\IR \to \IR[/m] mit [mm] $f(x):=\sin(x)$ ($\forall [/mm] x [mm] \in \IR$) [/mm] definiert war) und mit $[x]'$ ist, genauer, die Ableitung der Funktion [mm] $g:\IR \to \IR$ [/mm] definiert durch $g(x):=x$ [mm] ($\forall [/mm] x [mm] \in \IR$) [/mm] gemeint.
Ich denke, du kannst für beide Funktionen (also $f$ bzw. $g$) die Ableitung angeben, oder?]

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de