www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Halden
Halden < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halden: maximale Höhe von Halden
Status: (Frage) beantwortet Status 
Datum: 00:57 Do 15.11.2007
Autor: Dani7

Aufgabe
Wie groß ist die maximale Tiefe einer Halde mit d Nachfolgern mit n Elementen (falls Sie es
benötigen: Die Formel fürr die geometrische Reihe können Sie recherchieren)?

Eine Halde ist ja so aufgebaut, dass ein Vater immer zwei Söhne hat, dann ist ja wegen der Summenformel der geometrischen Reihe:

Summe [mm] =(2^n)-1 [/mm]

laut Vorlesung ergibt sich aber [mm] (2^n)-1+1, [/mm] und daraus kann man dann die maximale Höhe einer Halde errechnen mit:

[mm] 2^n<=n [/mm] und daraus ergibt sich dann n<= |ld(n)|

obwohl ich jetzt nicht genau weiß, woher die +1 kommt, kann ich das Beispiel noch nachvollziehen.
Wenn man nun aber d Nachfolger anstatt von zweien hat, dann ergibt sich laut geometrischer Reihe ja:

s (n)= [mm] 1*((d^n)-1)/(d-1) [/mm]
Ich weiß nun nicht ob ich hier auch die +1 dazuzählen muß, wenn ja, dann lautet meine weitere Berechnung:

[mm] (((d^n)-1) [/mm] /(d-1) )+1<=n

aber hier weiß ich nicht mehr weiter, wie kann man oder soll man hier weiterrechnen?
es wäre nett wenn mir jemand antworten würde.
Ich danke euch im voraus.
lg  daniela


        
Bezug
Halden: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Do 15.11.2007
Autor: Martin243

Hallo,

ich glaube, der Variablenname n wird hier etwas überstrapaziert.
Nennen wir $n$ die Gesamtzahl der Elemente, $d$ die Anzahl der Nachfolger pro Element und $t$ die maximale Tiefe (warum eigentlich maximal, ist sie bei gegebener Anzahl der Nachfolger nicht fest?).
Dann erhalten wir für $d=2$, wie du richtig festgestellt hast:
$n = [mm] 2^t [/mm] - 1$

Das +1 aus der Vorlesung kann ich mir gar nicht erklären.

Dann gilt für die (maximale) Tiefe:
$t = [mm] ld\left(n+1\right)$ [/mm]


Für andere $d$ kann man genauso nach der Summenformel rechnen:
$n = [mm] \bruch{d^t-1}{d-1}$ [/mm]

Hier bekommst du für die Tiefe $t$:
$t = [mm] \log_d\left(n*(d-1)+1\right)$ [/mm]


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de