www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Harmonische Funktion
Harmonische Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 20.01.2009
Autor: mikemodanoxxx

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

habe Probleme beim Lösen der obigen Aufgabe.

Für die Ableitungen habe ich raus:

[mm] u_{xx} [/mm] = [mm] e^{x}(axcos(by) [/mm] + [mm] 2a\cos(by) [/mm] + [mm] cy\sin(dy)) [/mm]
[mm] u_{yy} [/mm] = [mm] e^{x}(-ab^{2}xcos(by) [/mm] + [mm] 2cd\cos(dy) [/mm] - [mm] cd^{2}ysin(dy)) [/mm]

Jetzt weiß ich aber leider nicht wie ich beim Rechnen von [mm] u_{xx} [/mm] + [mm] u_{yy} [/mm] = 0 auf die Konstanten kommen soll.

Ich habs mit Koeff-Vgl probiert und komme dabei für auf b = [mm] \pm1 [/mm] und [mm] d=\pm1 [/mm] Ist das soweit schon mal richtig?

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Harmonische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Di 20.01.2009
Autor: rainerS

Hallo!

> [Dateianhang nicht öffentlich]
>  Hallo,
>  
> habe Probleme beim Lösen der obigen Aufgabe.
>  
> Für die Ableitungen habe ich raus:
>  
> [mm]u_{xx}[/mm] = [mm]e^{x}(axcos(by)[/mm] + [mm]2a\cos(by)[/mm] + [mm]cy\sin(dy))[/mm]
>  [mm]u_{yy}[/mm] = [mm]e^{x}(-ab^{2}xcos(by)[/mm] + [mm]2cd\cos(dy)[/mm] -
> [mm]cd^{2}ysin(dy))[/mm]
>  
> Jetzt weiß ich aber leider nicht wie ich beim Rechnen von
> [mm]u_{xx}[/mm] + [mm]u_{yy}[/mm] = 0 auf die Konstanten kommen soll.
>  
> Ich habs mit Koeff-Vgl probiert und komme dabei für auf b =
> [mm]\pm1[/mm] und [mm]d=\pm1[/mm] Ist das soweit schon mal richtig?

DAS ist richtig, aber du hast noch nicht alle Koeffizienten verglichen: bisher ja nur die von [mm] $x\cos(by)$ [/mm] und [mm] $y\sin(dy)$. [/mm] Es gibt aber noch [mm] $\cos(by)$ [/mm] und [mm] $\cos(dy)$. [/mm] Was kannst du denn aussagen, wenn du schon weisst, dass [mm] $b=\pm [/mm] 1$ und [mm] $d=\pm [/mm] 1$?

Anders gefragt: du kannst doch beliebige Werte von x und y einsetzen, was passiert denn bei geschickter Wahl von x und y?

Viele Grüße
   Rainer

Bezug
                
Bezug
Harmonische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 20.01.2009
Autor: mikemodanoxxx

a=-cd bekomme ich noch raus.

Jetzt würde ich konkrete Werte für c und a rausbekommen je nachdem ob d=1 oder d=-1 ist. Für die Funktion am Ende spielt das keine Rolle.

d=1 => a=-c

[mm] u=e^{x}(ax\cos(y) -ay\sin(y)) [/mm]

d=-1 => a=c

[mm] u=e^{x}(ax\cos(y) +ay\sin(-y)) [/mm]
[mm] =e^{x}(ax\cos(y) -ay\sin(y)) [/mm]

Für a finde ich keinen konkreten Wert. Richtig so?

Bezug
                        
Bezug
Harmonische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mi 21.01.2009
Autor: mikemodanoxxx

Hallo,

ich habe als Endergebnis (beim nächsten Aufgabenteil sollte man eine Funktion v(x,y) finden, so dass f(x,y) = u(x,y) + iv(x,y) holomorph ist)

f(x,y) = [mm] e^{x}(ax\cos(y)-ay\sin(y) [/mm] + [mm] i(e^{x}(ax\sin(y)+ay\cos(y)) [/mm]

raus. Jetzt soll ich das als komplexe Funktion (also in Abhängigkeit von z) beschreiben. Ich schaffe es allerdings nicht die Funktion gut umzuformen um einen Term zu enthalten. Den vorderen Teil könnte ich als [mm] e^{x}(ax\cos(y) [/mm] + [mm] iax\sin(y) [/mm] = [mm] axe^{x}e^{iy}=axe^{z} [/mm] schreiben, aber weiter komme ich nicht. x müsste ich dann mit Re{z} beschreiben. Beim hinteren komme ich auf gar nichts. Tipps?

edit: -siny=cos(y+pi/2) und sin(y+pi/2)=cos(y) damit komme ich auf [mm] aze^{z}. [/mm] Richtig so?


Bezug
                                
Bezug
Harmonische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Do 22.01.2009
Autor: rainerS

Hallo!

> Hallo,
>  
> ich habe als Endergebnis (beim nächsten Aufgabenteil sollte
> man eine Funktion v(x,y) finden, so dass f(x,y) = u(x,y) +
> iv(x,y) holomorph ist)
>  
> f(x,y) = [mm]e^{x}(ax\cos(y)-ay\sin(y)[/mm] +
> [mm]i(e^{x}(ax\sin(y)+ay\cos(y))[/mm]
>  
> raus. Jetzt soll ich das als komplexe Funktion (also in
> Abhängigkeit von z) beschreiben. Ich schaffe es allerdings
> nicht die Funktion gut umzuformen um einen Term zu
> enthalten. Den vorderen Teil könnte ich als [mm]e^{x}(ax\cos(y)[/mm]
> + [mm]iax\sin(y)[/mm] = [mm]axe^{x}e^{iy}=axe^{z}[/mm] schreiben, aber weiter
> komme ich nicht. x müsste ich dann mit Re{z} beschreiben.
> Beim hinteren komme ich auf gar nichts. Tipps?
>  
> edit: -siny=cos(y+pi/2) und sin(y+pi/2)=cos(y) damit komme
> ich auf [mm]aze^{z}.[/mm] Richtig so?

Sieht gut aus.

Du kommst auch direkt darauf, wenn du Sinus und Cosinus durch e-Funktionen ersetzt: [mm] $2\cos [/mm] y = [mm] e^y+e^{-y}$ [/mm] usw.

Viele Grüße
   Rainer

Bezug
                        
Bezug
Harmonische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 Do 22.01.2009
Autor: rainerS

Hallo!

> a=-cd bekomme ich noch raus.
>  
> Jetzt würde ich konkrete Werte für c und a rausbekommen je
> nachdem ob d=1 oder d=-1 ist. Für die Funktion am Ende
> spielt das keine Rolle.
>  
> d=1 => a=-c
>  
> [mm]u=e^{x}(ax\cos(y) -ay\sin(y))[/mm]
>  
> d=-1 => a=c
>  
> [mm]u=e^{x}(ax\cos(y) +ay\sin(-y))[/mm]
>  [mm]=e^{x}(ax\cos(y) -ay\sin(y))[/mm]
>  
> Für a finde ich keinen konkreten Wert. Richtig so?

Multiplikation mit einer Konstanten macht natürlich nichts aus.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de