www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Harmonische Funktionen
Harmonische Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Funktionen: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 09:54 Do 05.07.2012
Autor: Robse

Aufgabe
Funktionen, die die Laplace-Gleichung [mm] \Delta [/mm] f = 0 lösen, nennt man harmonische Funktionen.
Zeigen Sie, dass die folgenden Funktionen harmonisch sind.

f : [mm] \IR^2 [/mm] \ [mm] \{0,0 \} \to \IR [/mm] mit [mm] f(x_{1},x_{2}) [/mm] = [mm] ln(\parallel [/mm] x [mm] \parallel) [/mm]

Mein Ansatz ist folgender:

[mm] \parallel [/mm] x [mm] \parallel [/mm] = [mm] \wurzel{x_{1}^2+x_{2}^2} [/mm]
[mm] f(x_{1},x_{2}) [/mm] = [mm] ln(\wurzel{x_{1}^2+x_{2}^2}) [/mm]

[mm] \Delta [/mm] f = div (grad [mm] f(x_{1},x_{2})) [/mm] = div [mm] \vektor{ \bruch{\partial f}{\partial x_{1}} \\ \bruch{\partial f}{\partial x_{2}}} [/mm]

[mm] \Delta [/mm] f = div [mm] \vektor{\bruch{x_{1}}{x_{1}^2+x_{2}^2} \\ \bruch{x_{2}}{x_{1}^2+x_{2}^2}} [/mm] = [mm] \bruch{1}{x_{1}^2+x_{2}^2} [/mm] - [mm] \bruch{2x_{1}^2}{(x_{1}^2+x_{2}^2)^2} [/mm] + [mm] \bruch{1}{x_{1}^2+x_{2}^2} [/mm] - [mm] \bruch{2x_{2}^2}{(x_{1}^2+x_{2}^2)^2} [/mm]

Leider ergibt das aber nicht 0. Ich habe es schon meherere Male durchgerechnet, aber leider finde ich den Fehler nicht. Ich hoffe ihr könnt mir helfen.

Robse


        
Bezug
Harmonische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Do 05.07.2012
Autor: schachuzipus

Hallo Robse,


> Funktionen, die die Laplace-Gleichung [mm]\Delta[/mm] f = 0 lösen,
> nennt man harmonische Funktionen.
>  Zeigen Sie, dass die folgenden Funktionen harmonisch
> sind.
>  
> f : [mm]\IR^2[/mm] \ [mm]\{0,0 \} \to \IR[/mm] mit [mm]f(x_{1},x_{2})[/mm] =
> [mm]ln(\parallel[/mm] x [mm]\parallel)[/mm]
>  Mein Ansatz ist folgender:
>  
> [mm]\parallel[/mm] x [mm]\parallel[/mm] = [mm]\wurzel{x_{1}^2+x_{2}^2}[/mm]
>  [mm]f(x_{1},x_{2})[/mm] = [mm]ln(\wurzel{x_{1}^2+x_{2}^2})[/mm]
>  
> [mm]\Delta[/mm] f = div (grad [mm]f(x_{1},x_{2}))[/mm] = div [mm]\vektor{ \bruch{\partial f}{\partial x_{1}} \\ \bruch{\partial f}{\partial x_{2}}}[/mm]
>  
> [mm]\Delta[/mm] f = div [mm]\vektor{\bruch{x_{1}}{x_{1}^2+x_{2}^2} \\ \bruch{x_{2}}{x_{1}^2+x_{2}^2}}[/mm]
> = [mm]\bruch{1}{x_{1}^2+x_{2}^2}[/mm] -
> [mm]\bruch{2x_{1}^2}{(x_{1}^2+x_{2}^2)^2}[/mm] +
> [mm]\bruch{1}{x_{1}^2+x_{2}^2}[/mm] -
> [mm]\bruch{2x_{2}^2}{(x_{1}^2+x_{2}^2)^2}[/mm]
>  
> Leider ergibt das aber nicht 0. Ich habe es schon meherere
> Male durchgerechnet, aber leider finde ich den Fehler
> nicht. Ich hoffe ihr könnt mir helfen.

Ich nenne mal [mm]x_1=x[/mm] und [mm]x_2=y[/mm], dann ist das nicht so ein Indexgeschwurbel.

Also [mm]f(x,y)=\ln(\sqrt{x^2+y^2})=\frac{1}{2}\ln(x^2+y^2)[/mm]

Weiter ist [mm]\Delta f=f_{xx}+f_{yy}[/mm]

[mm]f_x(x,y)=\frac{1}{2}\frac{1}{x^2+y^2}\cdot{}2x=\frac{x}{x^2+y^2}[/mm]

[mm]f_y(x,y)=\frac{y}{x^2+y^2}[/mm]

Dann [mm]f_{xx}(x,y)=\frac{x^2+y^2-x(2x)}{(x^2+y^2)^2}=\frac{y^2-x^2}{(x^2+y^2)^2}[/mm]

Und wegen der Symmetrie entspr. [mm]f_{yy}(x,y)=\frac{x^2-y^2}{(x^2+y^2)^2}[/mm]

Das addiert sich also schön zu 0 ...

>  
> Robse
>  

Gruß

schachuzipus


Bezug
                
Bezug
Harmonische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Do 05.07.2012
Autor: Robse

Danke für deine schnelle Antwort. Eine kleine Frage dazu habe ich noch. Warum ist denn:
[mm] ln(\wurzel{x^2+y^2}) [/mm] = [mm] \bruch{1}{2}ln(x^2+y^2) [/mm]

Bezug
                        
Bezug
Harmonische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Do 05.07.2012
Autor: schachuzipus

Hallo nochmal,


> Danke für deine schnelle Antwort. Eine kleine Frage dazu
> habe ich noch. Warum ist denn:
>  [mm]ln(\wurzel{x^2+y^2})[/mm] = [mm]\bruch{1}{2}ln(x^2+y^2)[/mm]  

Zum einen ist [mm]\sqrt{a}=a^{\frac{1}{2}}[/mm], zum anderen blicke zurück auf die Schulzeit und die dort gelernten Logarithmusgesetze, hier:

[mm]\log_b\left(a^r\right)=r\cdot{}\log_b(a)[/mm]

Beweise dazu findest du im Netz, die Regel ist allerdings so bekannt, dass ich mir nicht vorstellen kann, dass du sie erst beweisen musst, bevor du sie anwenden darfst ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de