www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Harmonische Schwingung
Harmonische Schwingung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Schwingung: Überprüfung der Lösung
Status: (Frage) beantwortet Status 
Datum: 12:07 Mi 16.01.2013
Autor: Lewser

Aufgabe
Von einer harmonischen Schwingung sind folgende Daten bekannt: Das erste
Maximum bei y = 5 wird zur Zeit  [mm] t_{1} [/mm] = 3 erreicht, das erste Minimum bei [mm] t_{2} [/mm] = 10.

Wann ist zum ersten Mal die Auslenkung y = −2 erreicht?


Meine Schwingung (lt. Lösung richtig) ist:

[mm] y=5*sin(\bruch{\pi}{7}t+\bruch{\pi}{14}) [/mm]

Dann habe ich -2 eingesetzt und nach t aufgelöst und habe als Ergebnis: t=-1,416. Da die Zeit nicht rückwärts läuft, gehe ich davon aus, dass ich anhand der Symmetrie den nächsten positiven Zeitpunkt t herausfinden muss. In der Lösung ist dieser mit 7,416 angegeben., also gehe ich davon aus, dass ich richtig aufgelöst habe.

Ich habe mir das Ganze einmal aufgezeichnet und sehe, warum das so ist, aber kann mir jemand dafür einen mathematischen Zusammenhang aufschreiben? Ich habe gerade ein Brett vor dem Kopf.

        
Bezug
Harmonische Schwingung: Substitution
Status: (Antwort) fertig Status 
Datum: 12:54 Mi 16.01.2013
Autor: Al-Chwarizmi


> Von einer harmonischen Schwingung sind folgende Daten
> bekannt: Das erste
>  Maximum bei y = 5 wird zur Zeit  [mm]t_{1}[/mm] = 3 erreicht, das
> erste Minimum bei [mm]t_{2}[/mm] = 10.
>  
> Wann ist zum ersten Mal die Auslenkung y = −2 erreicht?
>  
> Meine Schwingung (lt. Lösung richtig) ist:
>  
> [mm]y=5*sin(\bruch{\pi}{7}t+\bruch{\pi}{14})[/mm]
>  
> Dann habe ich -2 eingesetzt und nach t aufgelöst und habe
> als Ergebnis: t=-1,416. Da die Zeit nicht rückwärts
> läuft, gehe ich davon aus, dass ich anhand der Symmetrie
> den nächsten positiven Zeitpunkt t herausfinden muss. In
> der Lösung ist dieser mit 7,416 angegeben., also gehe ich
> davon aus, dass ich richtig aufgelöst habe.
>  
> Ich habe mir das Ganze einmal aufgezeichnet und sehe, warum
> das so ist, aber kann mir jemand dafür einen
> mathematischen Zusammenhang aufschreiben? Ich habe gerade
> ein Brett vor dem Kopf.


Hallo Lewser,

gesucht ist die kleinste positive Lösung t der Gleichung

    [mm]sin\,\left(\underbrace{\,\bruch{\pi}{7}\ t\,+\,\bruch{\pi}{14}\,}_{\large{\alpha}}\right)\ =\ -\,0.4[/mm]

Für [mm] \alpha [/mm] kommen in Frage:  [mm] $\alpha\ [/mm] =\ [mm] -arcsin(0.4)+k*2\,\pi$ [/mm]
                sowie   [mm] $\alpha\ [/mm] =\ [mm] \pi+arcsin(0.4)+k*2\,\pi$ [/mm]  

Nun ist, wenn wir mal t=0 einsetzen, [mm] $\alpha\ [/mm] =\ [mm] \bruch{\pi}{14}$ [/mm]
An dieser Stelle sind wir auf der Sinuskurve im positiven
Bereich, und zwar nehmen die Sinuswerte dort noch zu.
Um zur ersten positiven Lösung zu kommen, sollten
wir also die Lösung  [mm] $\alpha\ [/mm] =\ [mm] \pi+arcsin(0.4)+k*2\,\pi$ [/mm]  mit k=0
nehmen, d.h.

      [mm] $\alpha\ [/mm] =\ [mm] \pi+arcsin(0.4)\ \approx\ [/mm] 3.5531$

Den zugehörigen x-Wert erhält man nun durch Rück-
substitution. Der auf Tausendstel gerundete Wert wäre
übrigens  7.417  (nicht 7.416).

LG ,   Al-Chw.

Bezug
                
Bezug
Harmonische Schwingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Mi 16.01.2013
Autor: Lewser

Sehr gut, hat mir die Augen geöffnet, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de