www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Harmonische Schwingungen
Harmonische Schwingungen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Harmonische Schwingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Di 30.11.2010
Autor: ponysteffi

Aufgabe
Bringen sie die gegebenen Funktionen auf die Form: y(t) = A [mm] sin(\omega [/mm] *t + [mm] \phi), [/mm] so dass sie A und [mm] \phi [/mm] herauslesen können.

a) y(t) = [mm] \wurzel{2} sin(\omega [/mm] t + [mm] \pi/4) [/mm] - [mm] cos(\omega [/mm] t)
b) y(t) = [mm] cos(\omega [/mm] t + [mm] \pi/2) [/mm] + [mm] sin(\omega [/mm] t + [mm] \pi/2) [/mm]

Ich habe eine ziemlich allgemeine Frage. Bei diesen Aufgaben habe ich versucht mit dem Additionstheorem zu vereinfachen. Jedoch kürzen sich nicht alle sin oder alle cos heraus. Wie kann ich denn hier vorgehen um am Schluss nur noch einen sin oder cos zu erhalten?

Vielen Dank im Voraus für eure Hilfe

        
Bezug
Harmonische Schwingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Di 30.11.2010
Autor: leduart

Hallo
> Bringen sie die gegebenen Funktionen auf die Form: y(t) = A
> [mm]sin(\omega[/mm] *t + [mm]\phi),[/mm] so dass sie A und [mm]\phi[/mm] herauslesen
> können.
>  
> a) y(t) = [mm]\wurzel{2} sin(\omega[/mm] t + [mm]\pi/4)[/mm] - [mm]cos(\omega[/mm] t)

links [mm] \wurzel{2}(sin(wt)cos(\pi/4)+cos(wt)sin\pi/4)-cos(wt)=A*sin(wt)cos(\phi)+A*cos(wt)sin\pi(4) [/mm]
damit Koeffizientenvergleich ;
[mm] \wurzel{2}cos(\pi(4)=Acos˜(\phi) [/mm]
[mm] \wurzel{2}cos(\pi(4)-1=Acos\phi [/mm]
daraus A und [mm] \phi [/mm] berechnen.
entsprechend bei b) da kannst du abkürzen mit rechts [mm] sin(wt+\pi/2+\phi) [/mm] links bleibt.
Gruss leduart

>  b) y(t) = [mm]cos(\omega[/mm] t + [mm]\pi/2)[/mm] + [mm]sin(\omega[/mm] t + [mm]\pi/2)[/mm]
>  Ich habe eine ziemlich allgemeine Frage. Bei diesen
> Aufgaben habe ich versucht mit dem Additionstheorem zu
> vereinfachen. Jedoch kürzen sich nicht alle sin oder alle
> cos heraus. Wie kann ich denn hier vorgehen um am Schluss
> nur noch einen sin oder cos zu erhalten?

Der ansatz ist rechts [mm] A*sin(wt+\phi) [/mm] mit Additionstheorm, manchmal auch links die AddTh. Dann koeffizientenvergleich.
anschaulich und zum Ablesen auch in einem Zeigerdiagramm.
Gruss leduart



Bezug
                
Bezug
Harmonische Schwingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 30.11.2010
Autor: ponysteffi

Vielen Dank für die schnelle Antwort!!


> Hallo
>  > Bringen sie die gegebenen Funktionen auf die Form: y(t)

> = A
> > [mm]sin(\omega[/mm] *t + [mm]\phi),[/mm] so dass sie A und [mm]\phi[/mm] herauslesen
> > können.
>  >  
> > a) y(t) = [mm]\wurzel{2} sin(\omega[/mm] t + [mm]\pi/4)[/mm] - [mm]cos(\omega[/mm] t)
>  links
> [mm]\wurzel{2}(sin(wt)cos(\pi/4)+cos(wt)sin\pi/4)-cos(wt)=A*sin(wt)cos(\phi)*A*cos(wt)sin\pi(4)[/mm]

die linke Seite ist mir klar, aber ich habe dann den sin&cos von [mm] \bruch{\pi}{4} [/mm] ausgerechnet und bin dann auf
1/2 * [mm] sin(\omega [/mm] * t) - 1/2 * cos [mm] (\omega [/mm] * t) gekommen...

woher kommt der Teil auf der rechten Seite des Gleichheitszeichens??

>  damit Koeffizientenvergleich ;
>  [mm]\wurzel{2}cos(\pi(4)=Acos˜(\phi)[/mm]
>  [mm]\wurzel{2}cos(\pi(4)-1=Acos\phi[/mm]
>  daraus A und [mm]\phi[/mm] berechnen.
>  entsprechend bei b) da kannst du abkürzen mit rechts
> [mm]sin(wt+\pi/2+\phi)[/mm] links bleibt.
>  Gruss leduart
>  
> >  b) y(t) = [mm]cos(\omega[/mm] t + [mm]\pi/2)[/mm] + [mm]sin(\omega[/mm] t + [mm]\pi/2)[/mm]

>  >  Ich habe eine ziemlich allgemeine Frage. Bei diesen
> > Aufgaben habe ich versucht mit dem Additionstheorem zu
> > vereinfachen. Jedoch kürzen sich nicht alle sin oder alle
> > cos heraus. Wie kann ich denn hier vorgehen um am Schluss
> > nur noch einen sin oder cos zu erhalten?
>  Der ansatz ist rechts [mm]A*sin(wt+\phi)[/mm] mit Additionstheorm,
> manchmal auch links die AddTh. Dann
> koeffizientenvergleich.
>  anschaulich und zum Ablesen auch in einem Zeigerdiagramm.
>  Gruss leduart
>  
>  


Bezug
                        
Bezug
Harmonische Schwingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Di 30.11.2010
Autor: MathePower

Hallo ponysteffi,

> Vielen Dank für die schnelle Antwort!!
>  
>
> > Hallo
>  >  > Bringen sie die gegebenen Funktionen auf die Form:

> y(t)
> > = A
> > > [mm]sin(\omega[/mm] *t + [mm]\phi),[/mm] so dass sie A und [mm]\phi[/mm] herauslesen
> > > können.
>  >  >  
> > > a) y(t) = [mm]\wurzel{2} sin(\omega[/mm] t + [mm]\pi/4)[/mm] - [mm]cos(\omega[/mm] t)
>  >  links
> >
> [mm]\wurzel{2}(sin(wt)cos(\pi/4)+cos(wt)sin\pi/4)-cos(wt)=A*sin(wt)cos(\phi)*A*cos(wt)sin\pi(4)[/mm]
>  
> die linke Seite ist mir klar, aber ich habe dann den
> sin&cos von [mm]\bruch{\pi}{4}[/mm] ausgerechnet und bin dann auf
> 1/2 * [mm]sin(\omega[/mm] * t) - 1/2 * cos [mm](\omega[/mm] * t) gekommen...
>  
> woher kommt der Teil auf der rechten Seite des
> Gleichheitszeichens??


Durch Anwendung eines Additionstheorems
auf den Ansatz [mm]A*\sin\left(\omega*t+\varphi\right)[/mm] entsteht der rechte Teil:

[mm]A*\sin\left(\omega*t+\phi\right)=A*sin(wt)cos(\phi)+A*cos(wt)sin(\phi)[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de