www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Haskell" - Haskell - Cantornummerirung
Haskell - Cantornummerirung < Haskell < Programmiersprachen < Praxis < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Haskell"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Haskell - Cantornummerirung: rechnen mit Cantor
Status: (Frage) überfällig Status 
Datum: 17:40 Do 29.11.2007
Autor: franzigoth1

Aufgabe
Die Menge [mm] \IN [/mm] x [mm] \IN [/mm] kann man mittels der Relation < total ordnen, indem man fordert:
(m,n) < (m',n') [mm] \gdw [/mm] (m+n) <  ((m+n) = (m'+n')  m < m').
Hierbei ist < die bekannte Ordnung über den natürlichen Zahlen.
Als Cantor-Nummerierung bezeichnen wir eine bijektive Funktion cpn : [mm] \IN [/mm] x  [mm] \IN \to \IN [/mm] , für die gilt:
(m,n) < (m',n') [mm] \gdw [/mm] cpn(m,n) < cpn(m',n'):

Zu cpn sei die Funktion cpi : [mm] \IN \to \IN [/mm] x [mm] \IN [/mm]  invers, das heißt, es gilt:
cpi(cpn(m,n)) = (m,n) und cpn(cpi(i)) = i

Durch k-fache Anwendung der Funktion cpn kann man die Nummerierung auf Folgen  
[mm] \alpha \in \IN^{k+1} [/mm] der Länge
k + 1 erweitern:

[mm] ctn^{k} (m_{k}m_{k-1}...m_{1}m_{0}) [/mm] = [mm] cpn(m_{k},cpn(m_{k-1},...cpn(m_{1},m_{0})...)): [/mm]

Das heißt, es ist [mm] ctn^{k}: \IN^{k} \to \IN [/mm] induktiv de¯niert durch:
[mm] ctn^{0} (m_{0}) [/mm] = [mm] m_{0}, ctn^{k+1} (m_{k+1}+m_{k}...m_{0}) [/mm] = [mm] cpn(m_{k},ctn^{k} (mx_{k}...mx_{0})): [/mm]
Zu [mm] ctn^{k} [/mm] sei die Funktion [mm] cti^{k} [/mm] : [mm] \IN \to \IN^{k} [/mm] invers, das heißt, es gilt:
[mm] cti^{k} (ctn^{k} (m_{k},m_{k-1},...,m_{1},m_{0})= (m_{k},m_{k-1},...,m_{1},m_{0}) [/mm] und [mm] ctn^{k} (cti^{k}(i)) [/mm] = i:

Schließlich kann man zur Nummerierung der Menge [mm] \IN^{+} [/mm]  |=  [mm] \IN^{*} [/mm]  -  { [mm] \varepsilon [/mm] } eine bijektive Funktion cfn :  [mm] \IN^{+} \to \IN [/mm] definieren durch:
[mm] cfn(\alpha) [/mm] = [mm] cpn(|\alpha| [/mm] - 1, [mm] ctn^{|\alpha|-1} (\alpha)); [/mm]
wobei [mm] |\alpha| [/mm] die Länge der Folge [mm] \alpha [/mm] ist. Hierzu sei cfi die inverse Funktion.

Implementieren Sie diese Funktionen in Haskell, wobei die folgenden Typvorgaben genutzt werden sollen:
cfn::[Int]->Int
cfi::Int->[Int]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Hallöchen..........

Kann mir einer bitte erklähren, was ich jetzt machen soll?
Verstehh weder die Aufgabenstellung, noch die Definitionen.
Ich weiss, es handelt sich hier um die Cantornummerierung.
Kann jemand helfen und mir beim Anfang helfen?


--Standard-Testfall cfn [2,3] == 172
cfn::[Int]->Int

--Standard-Testfall cfi 172 == [2,3]
cfi::Int->[Int]

        
Bezug
Haskell - Cantornummerirung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Mo 03.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Haskell"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de